Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013, Article ID 473196, 7 pages
Research Article

Double Ion Implantation and Pulsed Laser Melting Processes for Third Generation Solar Cells

1Departamento Física Aplicada III, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
2CEI Campus Moncloa, UCM-UPM, 28040 Madrid, Spain
3Instituto de Energía Solar, E.T.S.I. Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
4Department of TEAT, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
5Department of FyQATA, EIAE, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, 28040 Madrid, Spain

Received 27 February 2013; Accepted 18 October 2013

Academic Editor: Junsin Yi

Copyright © 2013 Eric García-Hemme et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


In the framework of the third generation of photovoltaic devices, the intermediate band solar cell is one of the possible candidates to reach higher efficiencies with a lower processing cost. In this work, we introduce a novel processing method based on a double ion implantation and, subsequently, a pulsed laser melting (PLM) process to obtain thicker layers of Ti supersaturated Si. We perform ab initio theoretical calculations of Si impurified with Ti showing that Ti in Si is a good candidate to theoretically form an intermediate band material in the Ti supersaturated Si. From time-of-flight secondary ion mass spectroscopy measurements, we confirm that we have obtained a Ti implanted and PLM thicker layer of 135 nm. Transmission electron microscopy reveals a single crystalline structure whilst the electrical characterization confirms the transport properties of an intermediate band material/Si substrate junction. High subbandgap absorption has been measured, obtaining an approximate value of 104 cm−1 in the photons energy range from 1.1 to 0.6 eV.