Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013 (2013), Article ID 595031, 12 pages
http://dx.doi.org/10.1155/2013/595031
Research Article

Supported Zinc Oxide Photocatalyst for Decolorization and Mineralization of Orange G Dye Wastewater under UV365 Irradiation

Institute of Environmental Engineering, Hungkuang University, No. 34 Chung-Chie Road, Shalu, Taichung 433, Taiwan

Received 18 August 2013; Revised 24 September 2013; Accepted 25 September 2013

Academic Editor: Jiaguo Yu

Copyright © 2013 Ming-Chin Chang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. H. Ince and D. T. Gönenç, “Treatability of a textile azo dye by UV/H2O2,” Environmental Technology, vol. 18, no. 2, pp. 179–185, 1997. View at Google Scholar · View at Scopus
  2. U. Pagga and D. Brown, “The degradation of dyestuffs: part II. Behaviour of dyestuffs in aerobic biodegradation tests,” Chemosphere, vol. 15, no. 4, pp. 479–491, 1986. View at Google Scholar · View at Scopus
  3. M. A. Brown and S. C. DeVito, “Predicting azo dye toxicity,” Critical Reviews in Environmental Science and Technology, vol. 23, no. 3, pp. 249–324, 1993. View at Google Scholar · View at Scopus
  4. H.-Y. Shu, C.-R. Huang, and M.-C. Chang, “Decolorization of mono-azo dyes in wastewater by advanced oxidation process: a case study of acid red 1 and acid yellow 23,” Chemosphere, vol. 29, no. 12, pp. 2597–2607, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. C. M. Kao, M. S. Chou, W. L. Fang, B. W. Liu, and B. R. Huang, “Regulating colored textile wastewater by 3/31 wavelength admi methods in Taiwan,” Chemosphere, vol. 44, no. 5, pp. 1055–1063, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. H.-Y. Shu and C.-R. Huang, “Degradation of commercial azo dyes in water using ozonation and UV enhanced ozonation process,” Chemosphere, vol. 31, no. 8, pp. 3813–3825, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Galindo and A. Kalt, “UV-H2O2 oxidation of monoazo dyes in aqueous media: a kinetic study,” Dyes and Pigments, vol. 40, no. 1, pp. 27–35, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Neamtu, I. Siminiceanu, A. Yediler, and A. Kettrup, “Kinetics of decolorization and mineralization of reactive azo dyes in aqueous solution by the UV/H2O2 oxidation,” Dyes and Pigments, vol. 53, pp. 93–99, 2002. View at Google Scholar
  9. R. Venkatadri and R. W. Peters, “Chemical oxidation technologies: ultraviolet light/hydrogen peroxide, Fenton's reagent, and titanium dioxide-assisted photocatalysis,” Hazardous Waste and Hazardous Materials, vol. 10, no. 2, pp. 107–149, 1993. View at Google Scholar · View at Scopus
  10. H.-Y. Shu, M.-C. Chang, and H.-J. Fan, “Decolorization of azo dye acid black 1 by the UV/H2O2 process and optimization of operating parameters,” Journal of Hazardous Materials, vol. 113, no. 1–3, pp. 201–208, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. H.-Y. Shu, M.-C. Chang, and H.-J. Fan, “Effects of gap size and UV dosage on decolorization of C.I. Acid Blue 113 wastewater in the UV/H2O2 process,” Journal of Hazardous Materials, vol. 118, no. 1–3, pp. 205–211, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Rodríguez, R. Peche, J. M. Merino, and L. M. Camarero, “Decoloring of aqueous solutions of indigocarmine dye in an acid medium by H2O2/UV advanced oxidation,” Environmental Engineering Science, vol. 24, no. 3, pp. 363–371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. H.-Y. Shu and M.-C. Chang, “Decolorization effects of six azo dyes by O3, UV/O3 and UV/H2O2 processes,” Dyes and Pigments, vol. 65, no. 1, pp. 25–31, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. C.-H. Wu and H.-Y. Ng, “Degradation of C.I. Reactive Red 2 (RR2) using ozone-based systems: comparisons of decolorization efficiency and power consumption,” Journal of Hazardous Materials, vol. 152, no. 1, pp. 120–127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. T.-H. Kim, C. Park, J. Yang, and S. Kim, “Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation,” Journal of Hazardous Materials, vol. 112, no. 1-2, pp. 95–103, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Ay, E. C. Catalkaya, and F. Kargi, “Advanced oxidation of direct red (DR 28) by fenton treatment,” Environmental Engineering Science, vol. 25, no. 10, pp. 1455–1462, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. A. Behnajady, N. Modirshahla, and R. Hamzavi, “Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst,” Journal of Hazardous Materials, vol. 133, no. 1–3, pp. 226–232, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Chakrabarti and B. K. Dutta, “Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst,” Journal of Hazardous Materials, vol. 112, no. 3, pp. 269–278, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Daneshvar, M. H. Rasoulifard, A. R. Khataee, and F. Hosseinzadeh, “Removal of C.I. Acid Orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder,” Journal of Hazardous Materials, vol. 143, no. 1-2, pp. 95–101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Yu and X. Yu, “Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres,” Environmental Science and Technology, vol. 42, no. 13, pp. 4902–4907, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Liu, C. Li, J. Yu, and Q. Xiang, “Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers,” CrystEngComm, vol. 13, no. 7, pp. 2533–2541, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. M. A. Behnajady, N. Modirshahla, N. Daneshvar, and M. Rabbani, “Photocatalytic degradation of C.I. Acid Red 27 by immobilized ZnO on glass plates in continuous-mode,” Journal of Hazardous Materials, vol. 140, no. 1-2, pp. 257–263, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Koutantou, M. Kostadima, and E. Chatzisymeon, “Solar photocatalytic decomposition of estrogens over immobilized zinc oxide,” Catalysis Today, vol. 209, pp. 66–73, 2013. View at Google Scholar
  24. A. Zacharakis, E. Chatzisymeon, V. Binas, Z. Frontistis, D. Venieri, and D. Mantzavinos, “Solar photocatalytica degradation of bisphenol A on immobilized ZnO or TiO2,” International Journal of Photoenergy, vol. 2013, Article ID 570587, 9 pages, 2013. View at Publisher · View at Google Scholar
  25. M. C. Chang, C. P. Huang, H. Y. Shu, and Y. C. Chang, “A new photocatalytic system using steel mesh and cold cathode fluorescent light for the decolorization of azo dye orange G,” International Journal of Photoenergy, vol. 2012, Article ID 303961, 9 pages, 2012. View at Publisher · View at Google Scholar
  26. Q. Xiang, J. Yu, and P. K. Wong, “Quantitative characterization of hydroxyl radicals produced by various photocatalysts,” Journal of Colloid and Interface Science, vol. 357, no. 1, pp. 163–167, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Aarthi, P. Narahari, and G. Madras, “Photocatalytic degradation of Azure and Sudan dyes using nano TiO2,” Journal of Hazardous Materials, vol. 149, no. 3, pp. 725–734, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Sahel, N. Perol, H. Chermette, C. Bordes, Z. Derriche, and C. Guillard, “Photocatalytic decolorization of Remazol Black 5 (RB5) and Procion Red MX-5B-Isotherm of adsorption, kinetic of decolorization and mineralization,” Applied Catalysis B, vol. 77, no. 1-2, pp. 100–109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Barka, A. Assabbane, A. Nounah, and Y. A. Ichou, “Photocatalytic degradation of indigo carmine in aqueous solution by TiO2-coated non-woven fibres,” Journal of Hazardous Materials, vol. 152, no. 3, pp. 1054–1059, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Saien, M. Asgari, A. R. Soleymani, and N. Taghavinia, “Photocatalytic decomposition of direct red 16 and kinetics analysis in a conic body packed bed reactor with nanostructure titania coated Raschig rings,” Chemical Engineering Journal, vol. 151, no. 1–3, pp. 295–301, 2009. View at Publisher · View at Google Scholar · View at Scopus