Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013, Article ID 613064, 7 pages
http://dx.doi.org/10.1155/2013/613064
Research Article

Theoretical Study of Copper Complexes: Molecular Structure, Properties, and Its Application to Solar Cells

1NANOCOSMOS Virtual Lab, Centro de Investigación en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31190 Chihuahua, CHIH, Mexico
2Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, SIN, Mexico

Received 13 October 2012; Revised 26 January 2013; Accepted 3 February 2013

Academic Editor: Theodoros Dimopoulos

Copyright © 2013 Jesus Baldenebro-Lopez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. G. Bomben, K. C. D. Robson, B. D. Koivisto, and C. P. Berlinguette, “Cyclometalated ruthenium chromophores for the dye-sensitized solar cell,” Coordination Chemistry Reviews, vol. 256, pp. 1438–1450, 2012. View at Google Scholar
  2. F. De Angelis, S. Fantacci, and R. Gebauer, “Simulating dye-sensitized TiO2 heterointerfaces in explicit solvent: absorption spectra, energy levels, and dye desorption,” Journal of Physical Chemistry Letters, vol. 2, no. 7, pp. 813–817, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Shibano, T. Umeyama, Y. Matano, and H. Imahori, “Electron-donating perylene tetracarboxylic acids for dye-sensitized solar cells,” Organic Letters, vol. 9, no. 10, pp. 1971–1974, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Wang, M. Wu, X. Lin, A. Hagfeldt, and T. Ma, “Optimization of the performance of dye-sensitized solar cells based on Pt-like TiC counter electrodes,” The European Journal of Inorganic Chemistry, vol. 2012, no. 22, pp. 3557–3561, 2012. View at Google Scholar
  5. S.-H. Liu, H. Fu, Y.-M. Cheng et al., “Theoretical study of N749 dyes anchoring on the (TiO2)28 surface in DSSCs and their electronic absorption properties,” The Journal of Physical Chemistry C, vol. 116, no. 31, pp. 16338–16345, 2012. View at Google Scholar
  6. C. Dragonetti, A. Valore, A. Colombo et al., “A new thiocyanate-free cyclometallated ruthenium complex for dye-sensitized solar cells: beneficial effects of substitution on the cyclometallated ligand,” Journal of Organometallic Chemistry, vol. 714, pp. 88–93, 2012. View at Google Scholar
  7. M. Katono, T. Bessho, M. Wielopolski et al., “Influence of the anchoring modes on the electronic and photovoltaic properties of D−π-A dyes,” The Journal of Physical Chemistry C, vol. 116, no. 32, pp. 16876–16884, 2012. View at Google Scholar
  8. X. Lu, Q. Feng, T. Lan, G. Zhou, and Z.-S. Wang, “Molecular engineering of quinoxaline-based organic sensitizers for highly efficient and stable dye-sensitized solar cells,” Chemistry of Materials, vol. 24, no. 16, pp. 3179–3187, 2012. View at Google Scholar
  9. M. K. Nazeeruddin, A. Kay, I. Rodicio et al., “Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes,” Journal of the American Chemical Society, vol. 115, no. 14, pp. 6382–6390, 1993. View at Google Scholar · View at Scopus
  10. M. K. Nazeeruddin, F. de Angelis, S. Fantacci et al., “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,” Journal of the American Chemical Society, vol. 127, no. 48, pp. 16835–16847, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. G. C. Vougioukalakis, A. I. Philippopoulos, T. Stergiopoulos, and P. Falaras, “Contributions to the development of ruthenium-based sensitizers for dye-sensitized solar cells,” Coordination Chemistry Reviews, vol. 255, no. 21-22, pp. 2602–2621, 2011. View at Google Scholar
  12. N. Alonso-Vante, J.-F. Nierengarten, and J.-P. Sauvage, “Spectral sensitization of large-band-gap semiconductors (thin films and ceramics) by a carboxylated bis(1,10-phenanthroline)copper(I) complex,” Journal of the Chemical Society, Dalton Transactions, no. 11, pp. 1649–1654, 1994. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Deng, Q. Xiu, L. Guo, L. Zhang, G. Wen, and C. Zhong, “Branched chain polymeric metal complexes containing Co(II) or Ni(II) complexes with a donor-π-acceptor architecture: synthesis, characterization, and photovoltaic applications,” Journal of Materials Science, vol. 47, no. 7, pp. 3383–3390, 2012. View at Google Scholar
  14. L. Barrientos, C. Araneda, B. Loeb, and I. G. Crivelli, “Synthesis, spectroscopic and electrochemical characterization of copper(I) complexes with functionalized pyrazino[2,3-f]-1,10-phenanthroline,” Polyhedron, vol. 27, no. 4, pp. 1287–1295, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Sakaki, T. Kuroki, and T. Hamada, “Synthesis of a new copper(I) complex,[Cu(tmdcbpy)2]+ (tmdcbpy = 4,4′,6,6′-tetramethyl-2,2′-bipyridine-5,5′- dicarboxylic acid), and its application to solar cells,” Journal of the Chemical Society, Dalton Transactions, no. 6, pp. 840–842, 2002. View at Google Scholar · View at Scopus
  16. S. Hattori, Y. Wada, S. Yanagida, and S. Fukuzumi, “Blue copper model complexes with distorted tetragonal geometry acting as effective electron-transfer mediators in dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 127, no. 26, pp. 9648–9654, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Bessho, E. C. Constable, M. Graetzel et al., “An element of surprise-efficient copper-functionalized dye-sensitized solar cells,” Chemical Communications, pp. 3717–3719, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. Y.-Y. Lin, T.-H. Chu, S.-S. Li et al., “Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells,” Journal of the American Chemical Society, vol. 131, no. 10, pp. 3644–3649, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Physical Review, vol. 136, no. 3B, pp. B864–B871, 1964. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Physical Review, vol. 140, no. 4A, pp. A1133–A1138, 1965. View at Publisher · View at Google Scholar · View at Scopus
  21. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, NY, USA, 1989.
  22. K. Burke, J. Werschnik, and E. K. U. Gross, “Time-dependent density functional theory: past, present, and future,” Journal of Chemical Physics, vol. 123, no. 6, 9 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, “An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules,” Journal of Chemical Physics, vol. 109, no. 19, pp. 8218–8224, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Bauernschmitt and R. Ahlrichs, “Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory,” Chemical Physics Letters, vol. 256, no. 4-5, pp. 454–464, 1996. View at Google Scholar · View at Scopus
  25. F. Gaussian 09 Revision A. 02, M. J., G. W.Trucks, H. B. Schlegel et al., Gaussian, Inc., Wallingford CT, 2009.
  26. Y. Zhao and D. G. Truhlar, “The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals,” Theoretical Chemistry Accounts, vol. 120, no. 1–3, pp. 215–241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Baldenebro-López, J. Castorena-González, N. Flores-Holguín, J. Almaral-Sánchez, and D. Glossman-Mitnik, “Computational molecular nanoscience study of the properties of copper complexes for dye-sensitized solar cells,” International Journal of Molecular Sciences, vol. 13, no. 12, pp. 16005–16019, 2012. View at Google Scholar
  28. T. H. Dunning Jr. and P. J. Hay, Methods of Electronic Structure Theory, Plenum, New York, NY, USA, 1976.
  29. C. Sosa, J. Andzelm, B. C. Elkin, E. Wimmer, K. D. Dobbs, and D. A. Dixon, “A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds,” The Journal of Physical Chemistry, vol. 96, no. 16, pp. 6630–6636, 1992. View at Google Scholar · View at Scopus
  30. S. I. Gorelsky, “Swizard program,” 2012, University of Ottawa, Ottawa, Canada, http://www.sg-chem.net/.
  31. S. I. Gorelsky and A. B. P. Lever, “Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods,” Journal of Organometallic Chemistry, vol. 635, no. 1-2, pp. 187–196, 2001. View at Google Scholar
  32. J. Tomasi, B. Mennucci, and R. Cammi, “Quantum mechanical continuum solvation models,” Chemical Reviews, vol. 105, no. 8, pp. 2999–3094, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Cossi and V. Barone, “Time-dependent density functional theory for molecules in liquid solutions,” The Journal of Chemical Physics, vol. 115, no. 10, pp. 4708–4717, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. M. A. Green, Solar Cells: Operating Principles, Technology and Systems Applications, Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1982.
  35. F. de Angelis, S. Fantacci, and A. Sgamellotti, “An integrated computational tool for the study of the optical properties of nanoscale devices: application to solar cells and molecular wires,” Theoretical Chemistry Accounts, vol. 117, no. 5-6, pp. 1093–1104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. Y.-X. Weng, Y.-Q. Wang, J. B. Asbury, H. N. Ghosh, and T. Lian, “Back electron transfer from TiO2 nanoparticles to FeIII(CN)63: origin of non-single-exponential and particle size independent dynamics,” Journal of Physical Chemistry B, vol. 104, no. 1, pp. 93–104, 2000. View at Google Scholar · View at Scopus
  37. X. Lu, S. Wei, C.-M. L. Wu, S. Li, and W. Guo, “Can polypyridyl Cu(I)-based complexes provide promising sensitizers for dye-sensitized solar cells? A theoretical insight into Cu(I) versus Ru(II) sensitizers,” Journal of Physical Chemistry C, vol. 115, no. 9, pp. 3753–3761, 2011. View at Publisher · View at Google Scholar · View at Scopus