Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013, Article ID 680213, 11 pages
http://dx.doi.org/10.1155/2013/680213
Research Article

An Improved Nonlinear Five-Point Model for Photovoltaic Modules

Environmental Energy Technologies Laboratory (EETL), Faculty of Sciences, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon

Received 31 May 2013; Revised 5 August 2013; Accepted 5 September 2013

Academic Editor: Věra Cimrova

Copyright © 2013 Sakaros Bogning Dongue et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Carrero, J. Amador, and S. Arnaltes, “A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances,” Renewable Energy, vol. 32, no. 15, pp. 2579–2589, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive approach to modeling and simulation of photovoltaic arrays,” IEEE Transactions on Power Electronics, vol. 24, no. 5, pp. 1198–1208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. A. N. Celik and N. Acikgoz, “Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models,” Applied Energy, vol. 84, no. 1, pp. 1–15, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. A. H. Arab, F. Chenlo, and M. Benghanem, “Loss-of-load probability of photovoltaic water pumping systems,” Solar Energy, vol. 76, no. 6, pp. 713–723, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. W. De Soto, S. A. Klein, and W. A. Beckman, “Improvement and validation of a model for photovoltaic array performance,” Solar Energy, vol. 80, no. 1, pp. 78–88, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. T. F. Elshatter, M. E. Elhagree, Aboueldahab, and A. A. Elkousry, “Fuzzy modeling and simulation of photovoltaic system,” in Proceedings of the 14th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 1999.
  7. A. Mellit, M. Benghanem, and S. A. Kalogirou, “Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: proposition for a new sizing procedure,” Renewable Energy, vol. 32, no. 2, pp. 285–313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. N. Celik, “Artificial neural network modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules,” Solar Energy, vol. 85, no. 10, pp. 2507–2517, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Lorenzo, Solar Electricity: Engineering of Photovoltaic Systems, Progensa, 1994.
  10. J. A. Gow and C. D. Manning, “Development of a photovoltaic array model for use in power-electronics simulation studies,” IEE Proceedings: Electric Power Applications, vol. 146, no. 2, pp. 193–200, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Zhou, H. Yang, and Z. Fang, “A novel model for photovoltaic array performance prediction,” Applied Energy, vol. 84, no. 12, pp. 1187–1198, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Asif and Y. Li, “Solar cell modeling and parameter optimization using simulated annealing,” Journal of Propulsion and Power, vol. 24, no. 5, pp. 1018–1022, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Maffezzoni and D. D'Amore, “Compact electrothermal macromodeling of photovoltaic modules,” IEEE Transactions on Circuits and Systems II, vol. 56, no. 2, pp. 162–166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Bogning Dongue, D. Njomo, and L. Ebengai, “A new strategy for accurately predicting I-V electrical characteristics of PV modules using a nonlinear five-point model,” Journal of Energy, vol. 2013, Article ID 321694, 8 pages, 2013. View at Publisher · View at Google Scholar
  15. D. Chan and J. Phang, “Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics,” IEEE Transactions on Electron Devices, vol. 34, no. 2, pp. 286–293, 1987. View at Google Scholar · View at Scopus
  16. D. K. Schroder, Semiconductor Material and Device Characterization, John Willey & Sons, New York, NY, USA, 1998.
  17. M. Chegaar, Z. Ouennoughi, F. Guechi, and H. Langueur, “Determination of solar cells parameters under illuminated conditions,” Journal of Electron Devices, vol. 2, pp. 17–21, 2003. View at Google Scholar
  18. E. E. van Dyk, E. L. Meyer, F. J. Vorster, and A. W. R. Leitch, “Long-term monitoring of photovoltaic devices,” Renewable Energy, vol. 25, no. 2, pp. 183–197, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Saloux, A. Teyssedou, and M. Sorin, “Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point,” Solar Energy, vol. 85, no. 5, pp. 713–722, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Casbestany and L. Castener, “A simple solar cell series resistance measurement method,” Revue de Physique Appliquée, vol. 18, no. 9, pp. 565–587, 1983. View at Google Scholar
  21. S. R. Wenham, M. A. Green, M. E. Watt, and R. Corkish, Applied Photovoltaics, ARC Centre for Advanced Silicon Photovoltaics and Photonics, 2nd edition, 2007.
  22. Q. Jia, W. A. Anderson, E. Liu, and S. Zhang, “A novel approach for evaluating the series resistance of solar cells,” Solar Cells, vol. 25, no. 3, pp. 311–318, 1988. View at Google Scholar · View at Scopus
  23. M. Bashahu and A. Habyarimana, “Review and test of methods for determination of the solar cell series resistance,” Renewable Energy, vol. 6, no. 2, pp. 129–138, 1995. View at Google Scholar · View at Scopus
  24. N. H. Reich, W. G. J. H. M. van Sark, E. A. Alsema et al., “Crystalline silicon cell performance at low light intensities,” Solar Energy Materials and Solar Cells, vol. 93, no. 9, pp. 1471–1481, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. A. L. Fahrenbruch and R. H. Bube, Fundamentals of Solar Cells, Academic Press, New York, NY, USA, 1983.
  26. K. Ishaque, Z. Salam, S. Mekhilef, and A. Shamsudin, “Parameter extraction of solar photovoltaic modules using penalty-based differential evolution,” Applied Energy, vol. 99, pp. 297–308, 2012. View at Google Scholar
  27. Shell, Shell Solar Product Information Sheet, http://www.solarcellsales.com/techinfo/technical_docs.cfm.
  28. S. B. Dongue, D. Njomo, J. G. Tamba, and L. Ebengai, “Modeling of electrical response of illuminated crystalline photovoltaic modules using four- and five-parameter models,” International Journal of Emerging Technologies and Advanced Engineering, vol. 2, no. 11, pp. 612–619, 2012. View at Google Scholar
  29. J. A. Eikelboom and A. H. Reinders, “Determination of the irradiation dependent efficiency of multicrystalline Si PV modules on basis of IV curve fitting and its influence on the annual performance,” in Proceedings of the 14th European PV Solar Energy Conference, pp. 293–296, Barcelona, Spain, 1997.
  30. A. Kassis and M. Saad, “Analysis of multi-crystalline silicon solar cells at low illumination levels using a modified two-diode model,” Solar Energy Materials and Solar Cells, vol. 94, no. 12, pp. 2108–2112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. D. L. Bätzner, A. Romeo, H. Zogg, and A. N. Tiwari, “CdTe/CdS solar cell performance under low irradiance,” in Proceedings of the 17th European Photovoltaic Solar Energy Conference and Exhibition, Munich, Germany, 2001.
  32. J. R. Sites and P. H. Mauk, “Diode quality factor determination for thin-film solar cells,” Solar Cells, vol. 27, no. 1–4, pp. 411–417, 1989. View at Google Scholar · View at Scopus
  33. S. K. Sharma, K. B. Samuel, N. Srinivasamurthy, and B. L. Agrawal, “Overcoming the problems in determination of solar cell series resistance and diode factor,” Journal of Physics D, vol. 23, no. 9, pp. 1256–1260, 1990. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Ishaque and Z. Salam, “An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE),” Solar Energy, vol. 85, no. 9, pp. 2349–2359, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Singh, S. N. Singh, M. Lal, and M. Husain, “Temperature dependence of I-V characteristics and performance parameters of silicon solar cell,” Solar Energy Materials and Solar Cells, vol. 92, no. 12, pp. 1611–1616, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Abou-Ras, T. Kirchartz, and U. Rau, Advanced Characterization Techniques for Thin Film Solar Cells, Wiley-VCH, Weinheim, Germany, 2011.
  37. U. Rau, “Tunneling-enhanced recombination in Cu(In, Ga)Se2 heterojunction solar cells,” Applied Physics Letters, vol. 74, no. 1, pp. 111–113, 1999. View at Publisher · View at Google Scholar · View at Scopus