Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013 (2013), Article ID 685614, 10 pages
http://dx.doi.org/10.1155/2013/685614
Research Article

Au-TiO2 Nanocomposites and Efficient Photocatalytic Hydrogen Production under UV-Visible and Visible Light Illuminations: A Comparison of Different Crystalline Forms of TiO2

1Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
2Department of Physics, Kansas State University, Manhattan, KS 66506, USA
3Environmental Materials Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, Maharashtra 440020, India

Received 14 January 2013; Revised 5 March 2013; Accepted 11 March 2013

Academic Editor: Elias Stathatos

Copyright © 2013 Deepa Jose et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, no. 5358, pp. 37–38, 1972. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Maeda, “Photocatalytic water splitting using semiconductor particles: history and recent developments,” Journal of Photochemistry and Photobiology C, vol. 12, no. 4, pp. 237–268, 2011. View at Publisher · View at Google Scholar
  3. K. Maeda and K. Domen, “Photocatalytic water splitting: recent progress and future challenges,” Journal of Physical Chemistry Letters, vol. 1, no. 18, pp. 2655–2661, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Abe, “Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation,” Journal of Photochemistry and Photobiology C, vol. 11, no. 4, pp. 179–209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Kubacka, M. Fernández-García, and G. Colón, “Advanced nanoarchitectures for solar photocatalytic applications,” Chemical Society Reviews, vol. 112, no. 3, pp. 1555–1614, 2012. View at Publisher · View at Google Scholar
  6. S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nature Materials, vol. 10, pp. 911–921, 2011. View at Publisher · View at Google Scholar
  7. S. C. Warren and E. Thimsen, “Plasmonic solar water splitting,” Energy Environmental Science, vol. 5, pp. 5133–5146, 2012. View at Publisher · View at Google Scholar
  8. O. Carp, C. L. Huisman, and A. Reller, “Photoinduced reactivity of titanium dioxide,” Progress in Solid State Chemistry, vol. 32, no. 1-2, pp. 33–177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Brezová, A. Blažková, L. Karpinský et al., “Phenol decomposition using Mn+/TiO2 photocatalysts supported by the sol-gel technique on glass fibres,” Journal of Photochemistry and Photobiology A, vol. 109, no. 2, pp. 177–183, 1997. View at Publisher · View at Google Scholar
  10. X. Wang, M. Blackford, K. Prince, and R. A. Caruso, “Preparation of boron-doped porous titania networks containing gold nanoparticles with enhanced visible-light photocatalytic activity,” ACS Applied Materials and Interfaces, vol. 4, no. 1, pp. 476–482, 2012. View at Publisher · View at Google Scholar
  11. D. B. Hamal and K. J. Klabunde, “Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2,” Journal of Colloid and Interface Science, vol. 311, no. 2, pp. 514–522, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Primo, A. Corma, and H. García, “Titania supported gold nanoparticles as photocatalyst,” Physical Chemistry Chemical Physics, vol. 13, no. 3, pp. 886–910, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Wang and R. A. Caruso, “Enhancing photocatalytic activity of titania materials by using porous structures and the addition of gold nanoparticles,” Journal of Materials Chemistry, vol. 21, no. 1, pp. 20–28, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Tada, T. Kiyonaga, and S. I. Naya, “Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium(iv) dioxide,” Chemical Society Reviews, vol. 38, no. 7, pp. 1849–1858, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Subramanian, E. Wolf, and P. V. Kamat, “Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films?” Journal of Physical Chemistry B, vol. 105, no. 46, pp. 11439–11446, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. C. G. Silva, R. Juá rez, T. Marino, R. Molinari, and H. García, “Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water,” Journal of the American Chemical Society, vol. 133, no. 3, pp. 595–602, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Subramanian, E. E. Wolf, and P. V. Kamat, “Catalysis with TiO2/Gold nanocomposites. Effect of metal particle size on the fermi level equilibration,” Journal of the American Chemical Society, vol. 126, no. 15, pp. 4943–4950, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Jakob, H. Levanon, and P. V. Kamat, “Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level,” Nano Letters, vol. 3, no. 3, pp. 353–358, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Kimura, S. I. Naya, Y. Jin-nouchi, and H. Tada, “TiO2 crystal form-dependence of the Au/TiO2 plasmon photocatalyst's activity,” Journal of Physical Chemistry C, vol. 116, no. 12, pp. 7111–7117, 2012. View at Publisher · View at Google Scholar
  20. Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” Journal of the American Chemical Society, vol. 127, no. 20, pp. 7632–7637, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Tsukamoto, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, and T. Hirai, “Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation,” Journal of American Chemical Society, vol. 134, no. 14, pp. 6309–6315, 2012. View at Publisher · View at Google Scholar
  22. A. Furube, L. Du, K. Hara, R. Katoh, and M. Tachiya, “Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles,” Journal of the American Chemical Society, vol. 129, no. 48, pp. 14852–14853, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Nishijima, K. Ueno, Y. Kotake, K. Murakoshi, H. Inoue, and H. Misawa, “Near-infrared plasmon-assisted water oxidation,” Journal of Physical Chemistry Letters, vol. 3, no. 10, pp. 1248–1252, 2012. View at Publisher · View at Google Scholar
  24. Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” Journal of Physical Chemistry Letters, vol. 1, no. 13, pp. 2031–2036, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Kowalska, O. O. P. Mahaney, R. Abe, and B. Ohtani, “Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces,” Physical Chemistry Chemical Physics, vol. 12, no. 10, pp. 2344–2355, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Letters, vol. 11, pp. 1111–1116, 2011. View at Google Scholar
  27. H. Wang, T. You, W. Shi, J. Li, and L. Guo, “Au/TiO2/Au as a plasmonic coupling photocatalyst,” Journal of Physical Chemistry C, vol. 116, no. 10, pp. 6490–6494, 2012. View at Publisher · View at Google Scholar
  28. Y. Lu, H. Yu, S. Chen, X. Quan, and H. Zhao, “Integrating plasmonic nanoparticles with TiO2 photonic crystal for enhancement of visible-light-driven photocatalysis,” Energy Environmental Science, vol. 46, pp. 1724–1730, 2012. View at Google Scholar
  29. Z. W. Seh, S. Liu, M. Low et al., “Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation,” Advanced Materials, vol. 24, no. 17, pp. 2310–2314, 2012. View at Publisher · View at Google Scholar
  30. J. Li and H. C. Zeng, “Preparation of monodisperse Au/TiO2 nanocatalysts via self-assembly,” Chemistry of Materials, vol. 18, no. 18, pp. 4270–4277, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Soejima, H. Tada, T. Kawahara, and S. Ito, “Formation of au nanoclusters on TiO2 surfaces by a two-step method consisting of Au(III)-complex chemisorption and its photoreduction,” Langmuir, vol. 18, no. 11, pp. 4191–4194, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Yogi, K. Kojima, T. Takai, and N. Wada, “Photocatalytic degradation of methylene blue by Au-deposited TiO 2 film under UV irradiation,” Journal of Materials Science, vol. 44, no. 3, pp. 821–827, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. W.-C. Li, M. Comotti, and F. Schüth, “Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition-precipitation or impregnation,” Journal of Catalysis, vol. 237, no. 1, pp. 190–196, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. M. C. Hidalgo, M. Maicu, J. A. Navío, and G. Colón, “Effect of sulfate pretreatment on gold-modified TiO2 for photocatalytic applications,” Journal of Physical Chemistry C, vol. 113, no. 29, pp. 12840–12847, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Stoeva, K. J. Klabunde, C. M. Sorensen, and I. Dragieva, “Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures,” Journal of the American Chemical Society, vol. 124, no. 10, pp. 2305–2311, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. A. B. Smetana, K. J. Klabunde, and C. M. Sorensen, “Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation,” Journal of Colloid and Interface Science, vol. 284, no. 2, pp. 521–526, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. A. A. Ponce and K. J. Klabunde, “Chemical and catalytic activity of copper nanoparticles prepared via metal vapor synthesis,” Journal of Molecular Catalysis A, vol. 225, no. 1, pp. 1–6, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Cingarapu, Z. Yang, C. M. Sorensen, and K. J. Klabunde, “Synthesis of CdSe quantum dots by evaporation of bulk CdSe using SMAD and digestive ripening processes,” Chemistry of Materials, vol. 21, no. 7, pp. 1248–1252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. K. J. Klabunde, P. L. Timms, P. S. Skell, and S. Ittel, “Introduction to metal vapor synthesis,” Inorganic Synthesis, vol. 19, pp. 59–86, 1979. View at Publisher · View at Google Scholar
  40. Y. Kuo, C. D. Frye, M. Ikenberry, and K. J. Klabunde, “Titanium-indium oxy(nitride) with and without RuO2 loading as photocatalysts for hydrogen production under visible light from water,” Catalysis Today, vol. 199, pp. 15–23, 2013. View at Publisher · View at Google Scholar
  41. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” Journal of Physical Chemistry B, vol. 107, no. 3, pp. 668–677, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. P. V. Kamat, “Manipulation of charge transfer across semiconductor interface. A criterion that cannot be ignored in photocatalyst design,” Journal of Physical Chemistry Letters, vol. 3, no. 5, pp. 663–672, 2012. View at Publisher · View at Google Scholar
  43. A. Takai and P. V. Kamat, “Capture, store and discharge. Shuttling photogenerated electrons across TiO2-silver interface,” ACS Nano, vol. 5, no. 9, pp. 7369–7376, 2011. View at Publisher · View at Google Scholar
  44. V. Subramanian, E. E. Wolf, and P. V. Kamat, “Green emission to probe photoinduced charging events in ZnO-Au nanoparticles. Charge distribution and Fermi-level equilibration,” Journal of Physical Chemistry B, vol. 107, no. 30, pp. 7479–7485, 2003. View at Google Scholar · View at Scopus
  45. T. Hirakawa and P. V. Kamat, “Photoinduced electron storage and surface plasmon modulation in Ag TiO 2 clusters,” Langmuir, vol. 20, no. 14, pp. 5645–5647, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Wood, M. Giersig, and P. Mulvaney, “Fermi level equilibration in quantum dot-metal nanojunctions,” Journal of Physical Chemistry B, vol. 105, no. 37, pp. 8810–8815, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Choi, W. T. Chen, and P. V. Kamat, “Know thy metal neighbor. Plasmonic versus electron charging effects of gold nanoparticles in dye sensitized solar cells,” ACS Nano, vol. 6, no. 5, pp. 4418–4427, 2012. View at Publisher · View at Google Scholar
  48. A. Primo, T. Marino, A. Corma, R. Molinari, and H. García, “Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nanoparticulate CeO2 obtained by a biopolymer templating method,” Journal of the American Chemical Society, vol. 133, no. 18, pp. 6930–6933, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991. View at Google Scholar · View at Scopus
  50. J. Tang, M. White, G. D. Stucky, and E. W. McFarland, “Electrochemical fabrication of large-area Au/TiO2 junctions,” Electrochemistry Communications, vol. 5, no. 6, pp. 497–501, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Puangpetch, T. Sreethawong, S. Yoshikawa, and S. Chavadej, “Hydrogen production from photocatalytic water splitting over mesoporous-assembled SrTiO3 nanocrystal-based photocatalysts,” Journal of Molecular Catalysis A, vol. 312, no. 1-2, pp. 97–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. C.-W. Yen and M. A. El-Sayed, “Plasmonic field effect on the hexacyanoferrate (III)-thiosulfate electron transfer catalytic reaction on gold nanoparticles: electromagnetic or thermal?” Journal of Physical Chemistry C, vol. 113, no. 45, pp. 19585–19590, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. J. R. Adleman, D. A. Boyd, D. G. Goodwin, and D. Psaltis, “Heterogenous catalysis mediated by plasmon heating,” Nano Letters, vol. 9, no. 12, pp. 4417–4423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Awazu, M. Fujimaki, C. Rockstuhl et al., “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” Journal of the American Chemical Society, vol. 130, no. 5, pp. 1676–1680, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Christopher, D. B. Ingram, and S. Linic, “Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: photochemistry mediated by Ag surface plasmons,” Journal of Physical Chemistry C, vol. 114, no. 19, pp. 9173–9177, 2010. View at Publisher · View at Google Scholar
  56. D. B. Ingram and S. Linic, “Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface,” Journal of the American Chemical Society, vol. 133, no. 14, pp. 5202–5205, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. http://www.engineeringtoolbox.com/gases-solubility-water-d_1148.html.
  58. J. Kiwi and M. Grätzel, “Optimization of conditions for photochemical water cleavage. Aqueous Pt/TiO2 (anatase) dispersions under ultraviolet light,” Journal of Physical Chemistry, vol. 88, no. 7, pp. 1302–1307, 1984. View at Google Scholar · View at Scopus
  59. M. V. Rao, K. Rajeshwar, V. R. Pal Verneker, and J. DuBow, “Photosynthetic production of H2 and H2O2 on semiconducting oxide grains in aqueous solutions,” Journal of Physical Chemistry, vol. 84, no. 15, pp. 1987–1991, 1980. View at Google Scholar · View at Scopus