Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013, Article ID 712603, 9 pages
http://dx.doi.org/10.1155/2013/712603
Research Article

Release of Volatile Compounds from Polymeric Microcapsules Mediated by Photocatalytic Nanoparticles

1Centre of Physics, University of Minho, 4800-058 Guimarães, Portugal
2Centre of Chemistry, University of Minho, 4710-057 Braga, Portugal
3Chemical Engineering Department, Polo II, University of Coimbra, 3030-790 Coimbra, Portugal
4LEPAE, Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal

Received 14 January 2013; Accepted 24 January 2013

Academic Editor: Jiaguo Yu

Copyright © 2013 J. Marques et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Brandau, “Preparation of monodisperse controlled release microcapsules,” International Journal of Pharmaceutics, vol. 242, no. 1-2, pp. 179–184, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Aiedeh, E. Gianasi, I. Orienti, and V. Zecchi, “Chitosan microcapsules as controlled release systems for insulin,” Journal of Microencapsulation, vol. 14, no. 5, pp. 567–576, 1997. View at Google Scholar · View at Scopus
  3. U. Jeong, S. H. Im, P. H. C. Camargo, J. H. Kim, and Y. Xia, “Microscale fish bowls: a new class of latex particles with hollow interiors and engineered porous structures in their surfaces,” Langmuir, vol. 23, no. 22, pp. 10968–10975, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Dubey, T. C. Shami, and K. U. Bhasker Rao, “Microencapsulation technology and applications,” Defence Science Journal, vol. 59, no. 1, pp. 82–95, 2009. View at Google Scholar · View at Scopus
  5. D. G. Yu, S. H. Kim, and J. H. An, “Preparation and characterization of electronic inks encapsulation for microcapsule-type electrophoretic displays (EPDs),” Journal of Industrial and Engineering Chemistry, vol. 13, no. 3, pp. 438–443, 2007. View at Google Scholar · View at Scopus
  6. H. Bungerberg de Jong, “Crystallization-coacervation-flocculation,” Colloid Science, vol. 2, pp. 280–283, 1949. View at Google Scholar
  7. S. Leclercq, K. R. Harlander, and G. A. Reineccius, “Formation and characterization of microcapsules by complex coacervation with liquid or solid aroma cores,” Flavour and Fragrance Journal, vol. 24, no. 1, pp. 17–24, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Tiarks, K. Landfester, and M. Antonietti, “Preparation of polymeric nanocapsules by miniemulsion polymerization,” Langmuir, vol. 17, no. 3, pp. 908–918, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Arshady, “Microspheres and microcapsules, a survey of manufacturing techniques. Part III. Solvent evaporation,” Polymer Engineering and Science, vol. 30, no. 15, pp. 915–924, 1990. View at Google Scholar · View at Scopus
  10. H. Strohm, M. Sgraja, J. Bertling, and P. Löbmann, “Preparation of TiO2-polymer hybrid microcapsules,” Journal of Materials Science, vol. 38, no. 8, pp. 1605–1609, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Toubeli and C. Kiparissides, “Synthesis and characterization of polyterephthalamide membranes for encapsulation use: effect of the amine type and composition on the membrane permeability,” Journal of Membrane Science, vol. 146, no. 1, pp. 15–29, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Persico, C. Carfagna, L. Danicher, and Y. Frere, “Polyamide microcapsules containing jojoba oil prepared by inter-facial polymerization,” Journal of Microencapsulation, vol. 22, no. 5, pp. 471–486, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. L. Soto-Portas, J. F. Argillier, F. Méchin, and N. Zydowicz, “Preparation of oily core polyamide microcapsules via interfacial polycondensation,” Polymer International, vol. 52, no. 4, pp. 522–527, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. C. J. Tavares and F. J. S. Pina, “Photocatalytic coating for the controlled release of volatile agents,” International Patent WO 2011/012935 A2, PCT/IB2009/055716, World Intellectual Property Organization, 2011. View at Google Scholar
  15. M. A. Fox and M. T. Dulay, “Heterogeneous photocatalysis,” Chemical Reviews, vol. 93, no. 1, pp. 341–357, 1993. View at Google Scholar · View at Scopus
  16. A. L. Linsebigler, G. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results,” Chemical Reviews, vol. 95, no. 3, pp. 735–758, 1995. View at Google Scholar · View at Scopus
  17. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, no. 5528, pp. 269–271, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Cantau, T. Pigot, J. C. Dupin, and S. Lacombe, “N-doped TiO2 by low temperature synthesis: stability, photo-reactivity and singlet oxygen formation in the visible range,” Journal of Photochemistry and Photobiology A, vol. 216, no. 2–4, pp. 201–208, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Zhanga K, udagawab, Z. Liua et al., “Photocatalytic and photoelectrochemical studies on N-doped TiO2 photocatalyst,” Journal of Photochemistry and Photobiology A, vol. 202, no. 1, pp. 39–47, 2009. View at Publisher · View at Google Scholar
  20. T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, and S. Sugihara, “Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping,” Applied Catalysis B, vol. 42, no. 4, pp. 403–409, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Fu, L. Gao, and S. Yang, “CNTs/Ta3N5 nanocomposite with enhanced photocatalytic activity under visible light irradiation,” Journal of the American Ceramic Society, vol. 90, no. 4, pp. 1309–1311, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Cong, L. Xiao, J. Zhang, F. Chen, and M. Anpo, “Preparation and characterization of nitrogen-doped TiO2 photocatalyst in different acid environments,” Research on Chemical Intermediates, vol. 32, no. 8, pp. 717–724, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Mills and J. Wang, “Photobleaching of methylene blue sensitised by TiO2: an ambiguous system?” Journal of Photochemistry and Photobiology A, vol. 127, no. 1–3, pp. 123–134, 1999. View at Google Scholar · View at Scopus
  24. H. Hashemipour and M. Mirzaee, “Experimental study of influencing factors and kinetics in catalytic removal of methylene blue with TiO2 nanopowder,” American Journal of Environmental Engineering, vol. 2, no. 1, pp. 1–7, 2012. View at Publisher · View at Google Scholar
  25. C. H. Wu and J. M. Chern, “Kinetics of photocatalytic decomposition of methylene blue,” Industrial and Engineering Chemistry Research, vol. 45, no. 19, pp. 6450–6457, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Czili and A. Horváth, “Applicability of coumarin for detecting and measuring hydroxyl radicals generated by photoexcitation of TiO2 nanoparticles,” Applied Catalysis B, vol. 81, no. 3-4, pp. 295–302, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Essawy and K. Tauer, “Polyamide capsules via soft templating with oil drops-1. Morphological studies of the capsule wall,” Colloid and Polymer Science, vol. 288, no. 3, pp. 317–331, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. I. Hanno, C. Anselmi, and K. Bouchemal, “Polyamide nanocapsules and nano-emulsions containing Parsol MCX and Parsol 1789: in vitro release, ex vivo skin penetration and photo-stability studies,” Pharmaceutical Research, vol. 29, pp. 559–573, 2012. View at Google Scholar
  29. A. H. Mahvi, M. Ghanbarian, S. Nasseri, and A. Khairi, “Mineralization and discoloration of textile wastewater by TiO2 nanoparticles,” Desalination, vol. 238, no. 1–3, pp. 309–316, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Kumazawa, H. Otsuki, and E. Sada, “Preparation of monosized spherical titania fine particles by controlled hydrolysis of titanium tetraethoxide in ethanol,” Journal of Materials Science Letters, vol. 12, no. 11, pp. 839–840, 1993. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J. M. Herrmann, “Photocatalytic degradation pathway of methylene blue in water,” Applied Catalysis B, vol. 31, no. 2, pp. 145–157, 2001. View at Publisher · View at Google Scholar · View at Scopus