Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013, Article ID 726872, 6 pages
http://dx.doi.org/10.1155/2013/726872
Research Article

Synthesis, Characterization, and Photocatalysis of Well-Dispersible Phase-Pure Anatase TiO2 Nanoparticles

College of Biological and Environmental Engineering, Zhejiang University of Technology, No. 18 ChaoWang Road, Hangzhou 310014, China

Received 7 February 2013; Accepted 29 March 2013

Academic Editor: Gang Liu

Copyright © 2013 Xiuzhen Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. R. Armstrong, G. Armstrong, J. Canales, and P. G. Bruce, “TiO2-B nanowires as negative electrodes for rechargeable lithium batteries,” Journal of Power Sources, vol. 146, no. 1-2, pp. 501–506, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Park, W. R. Kim, H. T. Jeong, J. J. Lee, H. G. Kim, and W. Y. Choi, “Fabrication of dye-sensitized solar cells by transplanting highly ordered TiO2 nanotube arrays,” Solar Energy Materials and Solar Cells, vol. 95, no. 1, pp. 184–189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Ochiai and A. Fujishima, “Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification,” Journal of Photochemistry and Photobiology C, vol. 13, no. 4, pp. 247–262, 2012. View at Publisher · View at Google Scholar
  4. X. B. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications,” Chemical Reviews, vol. 107, no. 7, pp. 2891–2959, 2007. View at Publisher · View at Google Scholar
  5. M. Anpo, “Preparation, characterization, and reactivities of highly functional titanium oxide-based photocatalysts able to operate under UV-visible light irradiation: approaches in realizing high efficiency in the use of visible light,” Bulletin of the Chemical Society of Japan, vol. 77, no. 8, pp. 1427–1442, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Tanaka, T. Hisanaga, P. Rivera, D. F. Ollis, and H. Al-Ekabi, Photocatalytic Purification and Treatment of Water and Air, Elsevier, Amsterdam, The Netherlands, 1993.
  7. D. He and F. Lin, “Preparation and photocatalytic activity of anatase TiO2 nanocrystallites with high thermal stability,” Materials Letters, vol. 61, no. 16, pp. 3385–3387, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Furube, T. Asahi, H. Masuhara, H. Yamashita, and M. Anpo, “Charge carrier dynamics of standard TiO2 catalysts revealed by femtosecond diffuse reflectance spectroscopy,” Journal of Physical Chemistry B, vol. 103, no. 16, pp. 3120–3127, 1999. View at Google Scholar · View at Scopus
  9. G. H. Li, D. Chen, G. X. Yao, B. Shi, and C. Ma, “Preparation of WC TiO2 core-shell nanocomposite and its electrocatalytic characteristics,” Chinese Journal of Chemical Engineering, vol. 19, no. 1, pp. 145–150, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. S. J. Kim, M. F. A'Hearn, D. D. Wellnitz, R. Meier, and Y. S. Lee, “The rotational structure of the B-X system of sulfur dimers in the spectra of Comet Hyakutake (C/1996 B2),” Icarus, vol. 166, no. 1, pp. 157–166, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Y. Chen, H. J. Wang, and X. Z. Wei, “Characterization, properties and catalytic application of TiO2 nanotubes prepared by ultrasonic-assisted sol-hydrothermal method,” Materials Research Bulletin, vol. 47, no. 11, pp. 3747–3752, 2012. View at Publisher · View at Google Scholar
  12. P. Ding and A. W. Pacek, “De-agglomeration of goethite nano-particles using ultrasonic comminution device,” Powder Technology, vol. 187, no. 1, pp. 1–10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. G. Yu, H. G. Yu, B. Cheng, and C. Trapalis, “Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes,” Journal of Molecular Catalysis A, vol. 249, no. 1-2, pp. 135–142, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. G. Yu, W. G. Wang, and B. Cheng, “Synthesis and enhanced photocatalytic activity of a hierarchical porous flowerlike pn junction NiO/TiO2 photocatalyst,” Chemistry, vol. 5, no. 12, pp. 2499–2506, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Ohtani, O. O. Prieto-Mahaney, D. Li, and R. Abe, “What is Degussa (Evonic) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test,” Journal of Photochemistry and Photobiology A, vol. 216, no. 2–4, pp. 179–182, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Y. Han, C. F. Wu, and C. T. Hsieh, “Hydrothermal synthesis and visible light photocatalysis of metal-doped titania nanoparticles,” Journal of Vacuum Science and Technology B, vol. 25, no. 2, pp. 430–435, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. F. Tu, S. Y. Huang, J. P. Sang, and X. W. Zou, “Preparation of Fe-doped TiO2 nanotube arrays and their photocatalytic activities under visible light,” Materials Research Bulletin, vol. 45, no. 2, pp. 224–229, 2010. View at Publisher · View at Google Scholar · View at Scopus