Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013, Article ID 841762, 9 pages
http://dx.doi.org/10.1155/2013/841762
Research Article

Removal of Polyvinyl Alcohol Using Photoelectrochemical Oxidation Processes Based on Hydrogen Peroxide Electrogeneration

1Department of Safety Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
2Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, Tainan City 717, Taiwan
3Department of Safety, Health and Environmental Engineering, Hungkuang University, Shalu, Taichung 433, Taiwan

Received 25 June 2013; Revised 1 August 2013; Accepted 1 August 2013

Academic Editor: Mika Sillanpaa

Copyright © 2013 Kai-Yu Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Zhu, M. Tong, S. Shi, H. Zhao, and J. Ni, “Essential explanation of the strong mineralization performance of boron-doped diamond electrodes,” Environmental Science and Technology, vol. 42, no. 13, pp. 4914–4920, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Zhou, Z. Wu, X. Ma, Y. Cong, Q. Ye, and D. Wang, “A novel fluidized electrochemical reactor for organic pollutant abatement,” Separation and Purification Technology, vol. 34, no. 1–3, pp. 81–88, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Wei, H. Zhu, X. Mao, and F. Gan, “Electrochemical oxidation process combined with UV photolysis for the mineralization of nitrophenol in saline wastewater,” Separation and Purification Technology, vol. 77, no. 1, pp. 18–25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. D. R. Stapleton, I. K. Konstantinou, D. G. Hela, and M. Papadaki, “Photolytic removal and mineralisation of 2-halogenated pyridines,” Water Research, vol. 43, no. 16, pp. 3964–3973, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. O. Legrini, E. Oliveros, and A. M. Braun, “Photochemical processes for water treatment,” Chemical Reviews, vol. 93, no. 2, pp. 671–698, 1993. View at Google Scholar · View at Scopus
  6. M. Panizza and G. Cerisola, “Electrochemical generation of H2O2 in low ionic strength media on gas diffusion cathode fed with air,” Electrochimica Acta, vol. 54, no. 2, pp. 876–878, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Georgiou, P. Melidis, A. Aivasidis, and K. Gimouhopoulos, “Degradation of azo-reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide,” Dyes and Pigments, vol. 52, no. 2, pp. 69–78, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Wang, H. Zhao, X. Quan, Y. Zhao, and S. Chen, “Visible light photoelectrocatalysis with salicylic acid-modified TiO2 nanotube array electrode for p-nitrophenol degradation,” Journal of Hazardous Materials, vol. 166, no. 1, pp. 547–552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Zhou, Z. Hu, C. Zhang, Z. Bi, T. Jin, and M. Zhou, “Electrogeneration of hydrogen peroxide for electro-Fenton system by oxygen reduction using chemically modified graphite felt cathode,” Separation and Purification Technology, vol. 111, pp. 131–136, 2013. View at Google Scholar
  10. M. Skoumal, R. M. Rodríguez, P. L. Cabot et al., “Electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton degradation of the drug ibuprofen in acid aqueous medium using platinum and boron-doped diamond anodes,” Electrochimica Acta, vol. 54, no. 7, pp. 2077–2085, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Altin, “An alternative type of photoelectro-Fenton process for the treatment of landfill leachate,” Separation and Purification Technology, vol. 61, no. 3, pp. 391–397, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Irmak, H. I. Yavuz, and O. Erbatur, “Degradation of 4-chloro-2-methylphenol in aqueous solution by electro-Fenton and photoelectro-Fenton processes,” Applied Catalysis B, vol. 63, no. 3-4, pp. 243–248, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Model, E. Bustos, K. Esquivel, L. A. Godinez, and Y. Meas, “Electrochemical incineration of phenolic compounds from the hydrocarbon industry using boron-doped diamond electrodes,” International Journal of Photoenergy, vol. 2012, Article ID 681875, 6 pages, 2012. View at Publisher · View at Google Scholar
  14. C.-T. Wang, J.-L. Hu, W.-L. Chou, and Y.-M. Kuo, “Removal of color from real dyeing wastewater by Electro-Fenton technology using a three-dimensional graphite cathode,” Journal of Hazardous Materials, vol. 152, no. 2, pp. 601–606, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Jia, J. Yang, J. Liao, W. Wang, and Z. Wang, “Treatment of dyeing wastewater with ACF electrodes,” Water Research, vol. 33, no. 3, pp. 881–884, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. C.-T. Wang, W.-L. Chou, M.-H. Chung, and Y.-M. Kuo, “COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode,” Desalination, vol. 253, no. 1–3, pp. 129–134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. W. L. Chou, L. S. Chen, C. T. Wang, and S. R. Lee, “Electro-Fenton removal of polyvinyl alcohol from aqueous solutions using activated carbon fiber cathode,” Fresenius Environmental Bulletin, vol. 21, no. 12, pp. 3735–3742, 2012. View at Google Scholar
  18. J. Veres, S. Ogier, G. Lloyd, and D. De Leeuw, “Gate insulators in organic field-effect transistors,” Chemistry of Materials, vol. 16, no. 23, pp. 4543–4555, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. J. A. Giroto, R. Guardani, A. C. S. C. Teixeira, and C. A. O. Nascimento, “Study on the photo-Fenton degradation of polyvinyl alcohol in aqueous solution,” Chemical Engineering and Processing, vol. 45, no. 7, pp. 523–532, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. J. G. Lim and D. H. Park, “Degradation of polyvinyl alcohol by Brevibacillus laterosporus: metabolic pathway of polyvinyl alcohol to acetate,” Journal of Microbiology and Biotechnology, vol. 11, no. 6, pp. 928–933, 2001. View at Google Scholar · View at Scopus
  21. S. H. Bossmann, E. Oliveros, S. Göb et al., “Degradation of polyvinyl alcohol (PVA) by homogeneous and heterogeneous photocatalysis applied to the photochemically enhanced Fenton reaction,” Water Science and Technology, vol. 44, no. 5, pp. 257–262, 2001. View at Google Scholar · View at Scopus
  22. A. Grönroos, P. Pirkonen, J. Heikkinen, J. Ihalainen, H. Mursunen, and H. Sekki, “Ultrasonic depolymerization of aqueous polyvinyl alcohol,” Ultrasonics Sonochemistry, vol. 8, no. 3, pp. 259–264, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. S. J. Zhang and H. Q. Yu, “Radiation-induced degradation of polyvinyl alcohol in aqueous solutions,” Water Research, vol. 38, no. 2, pp. 309–316, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. S. K. Behera, J.-H. Kim, X. Guo, and H.-S. Park, “Adsorption equilibrium and kinetics of polyvinyl alcohol from aqueous solution on powdered activated carbon,” Journal of Hazardous Materials, vol. 153, no. 3, pp. 1207–1214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. W.-L. Chou, “Removal and adsorption characteristics of polyvinyl alcohol from aqueous solutions using electrocoagulation,” Journal of Hazardous Materials, vol. 177, no. 1–3, pp. 842–850, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. W.-L. Chou, C.-T. Wang, C.-W. Hsu, K.-Y. Huang, and T.-C. Liu, “Removal of total organic carbon from aqueous solution containing polyvinyl alcohol by electrocoagulation technology,” Desalination, vol. 259, no. 1–3, pp. 103–110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Sudoh, H. Kitaguchi, and K. Koide, “Electrochemical production of hydrogen peroxide by reduction of oxygen,” Journal of Chemical Engineering of Japan, vol. 18, no. 5, pp. 409–414, 1985. View at Google Scholar · View at Scopus
  28. J. H. Finley, “Spectrophotometric determination of polyvinyl alcohol in paper coatings,” Analytical Chemistry, vol. 33, no. 13, pp. 1925–1927, 1961. View at Google Scholar · View at Scopus
  29. M. Panizza and M. A. Oturan, “Degradation of Alizarin Red by electro-Fenton process using a graphite-felt cathode,” Electrochimica Acta, vol. 56, no. 20, pp. 7084–7087, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Y. Chu, Y. Qian, W. J. Wang, and X. L. Deng, “A dual-cathode electro-Fenton oxidation coupled with anodic oxidation system used for 4-nitrophenol degradation,” Journal of Hazardous Materials, vol. 199-200, pp. 179–185, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. I. Sirés, E. Guivarch, N. Oturan, and M. A. Oturan, “Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton's reagent at carbon-felt cathode,” Chemosphere, vol. 72, no. 4, pp. 592–600, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. A. R. Khataee, M. Zarei, and L. Moradkhannejhad, “Application of response surface methodology for optimization of azo dye removal by oxalate catalyzed photoelectro-Fenton process using carbon nanotube-PTFE cathode,” Desalination, vol. 258, no. 1–3, pp. 112–119, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. B. Xie and X. Z. Li, “Interactive oxidation of photoelectrocatalysis and electro-Fenton for azo dye degradation using TiO2-Ti mesh and reticulated vitreous carbon electrodes,” Materials Chemistry and Physics, vol. 95, no. 1, pp. 39–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Lei, H. Li, Z. Li et al., “Electro-Fenton degradation of cationic red X-GRL using an activated carbon fiber cathode,” Process Safety and Environmental Protection, vol. 88, no. 6, pp. 431–438, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Brillas, J. C. Calpe, and J. Casado, “Mineralization of 2,4-D by advanced electrochemical oxidation processes,” Water Research, vol. 34, no. 8, pp. 2253–2262, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. S.-H. Yuan and X.-H. Lu, “Comparison treatment of various chlorophenols by electro-Fenton method: relationship between chlorine content and degradation,” Journal of Hazardous Materials, vol. 118, no. 1–3, pp. 85–92, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. C. A. Martínez-Huitle and E. Brillas, “Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review,” Applied Catalysis B, vol. 87, no. 3-4, pp. 105–145, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Özcan, Y. Şahin, A. Savaş Koparal, and M. A. Oturan, “Carbon sponge as a new cathode material for the electro-Fenton process: comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium,” Journal of Electroanalytical Chemistry, vol. 616, no. 1-2, pp. 71–78, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Zhou, Q. Yu, L. Lei, and G. Barton, “Electro-Fenton method for the removal of methyl red in an efficient electrochemical system,” Separation and Purification Technology, vol. 57, no. 2, pp. 380–387, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. W.-P. Ting, M.-C. Lu, and Y.-H. Huang, “Kinetics of 2,6-dimethylaniline degradation by electro-Fenton process,” Journal of Hazardous Materials, vol. 161, no. 2-3, pp. 1484–1490, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Golnabi, M. R. Matloob, M. Bahar, and M. Sharifian, “Investigation of electrical conductivity of different water liquids and electrolyte solutions,” Iranian Physical Journal, vol. 3, no. 2, pp. 24–28, 2009. View at Google Scholar
  42. N. Modirshahla and M. A. Behnajady, “Photooxidative degradation of Malachite Green (MG) by UV/H2O2: influence of operational parameters and kinetic modeling,” Dyes and Pigments, vol. 70, no. 1, pp. 54–59, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Muruganandham and M. Swaminathan, “Photochemical oxidation of reactive azo dye with UV-H2O2 process,” Dyes and Pigments, vol. 62, no. 3, pp. 269–275, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Daneshvar, M. Rabbani, N. Modirshahla, and M. A. Behnajady, “Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C.I. Acid Red 27 (AR27),” Chemosphere, vol. 56, no. 10, pp. 895–900, 2004. View at Publisher · View at Google Scholar · View at Scopus