Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013 (2013), Article ID 878537, 6 pages
http://dx.doi.org/10.1155/2013/878537
Research Article

The Investigation on Color Purity of Blue Organic Light-Emitting Diodes (BOLED) by Hole-Blocking Layer

1Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung 83160, Taiwan
2Department of Applied Physics, National University of Kaohsiung, Kaohsiung 81148, Taiwan
3Department of Electronic Engineering, National Formosa University, Huwei, Yunlin 63201, Taiwan
4Department of Electro-Optical Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
5Department of Electrical Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan

Received 18 October 2013; Accepted 31 October 2013

Academic Editor: Teen-Hang Meen

Copyright © 2013 Kan-Lin Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Aziz, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science, vol. 283, no. 5409, pp. 1900–1902, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. H. S. Bang, D. U. Lee, T. W. Kim, S. M. Han, J. H. Seo, and Y. K. Kim, “Efficiency stabilization in deep-blue organic light-emitting devices with a double emitting layer acting as electron and hole trapping layers,” Thin Solid Films, vol. 516, no. 16, pp. 5649–5653, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. C. J. Huang, C. C. Kang, T. C. Lee, W. R. Chen, and T. H. Meen, “Improving the color purity and efficiency of blue organic light-emitting diodes (BOLED) by adding hole-blocking layer,” Journal of Luminescence, vol. 129, no. 11, pp. 1292–1297, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. C.-J. Huang, T.-H. Meen, K.-C. Liao, and Y.-K. Su, “The mechanism of efficiency enhancement with proper thickness of DPVBi layer for blue organic light-emitting devices (BOLED),” Journal of Physics and Chemistry of Solids, vol. 70, no. 3-4, pp. 765–768, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. D. U. Lee, D. C. Choo, T. W. Kim, J. H. Seo, J. H. Park, and Y. K. Kim, “Enhancement of efficiency in blue organic light-emitting devices with nanoscale barrier and trapping layers embedded in an emitting layer and a hole transport layer,” Thin Solid Films, vol. 517, no. 17, pp. 5326–5329, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Song, M. Meng, Y. H. Kim et al., “High efficient and color stable WOLED using double white emissive layer,” Journal of Luminescence, vol. 132, no. 8, pp. 2122–2125, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. Khizar-ul-Haq, M. A. Khan, X. Y. Jiang et al., “Blue organic light-emitting diodes with low driving voltage and maximum enhanced power efficiency based on buffer layer MoO3,” Journal of Luminescence, vol. 129, no. 10, pp. 1158–1162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. H. S. Bang, S. Y. Seo, D. C. Choo et al., “Effect of doped emitting layer on electrical and optical properties in blue organic light-emitting devices,” Thin Solid Films, vol. 517, no. 17, pp. 5314–5317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. H.-P. Lin, F. Zhou, X.-W. Zhang et al., “Enhanced color stability and improved performance in white organic light-emitting devices by utilizing a double-graded structure,” Synthetic Metals, vol. 161, no. 11-12, pp. 1133–1136, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Zhu, Z. Xu, S. Zhao et al., “Study on the influences of quantum well structure on the performance of organic light emitting devices,” Displays, vol. 32, no. 3, pp. 102–105, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. Y.-M. Shi, Z.-B. Deng, D.-H. Xu, and J. Xiao, “Organic light-emitting diodes with improved hole-electron balance and tunable light emission with aromatic diamine/bathocuproine multiple hole-trapping-layer,” Displays, vol. 27, no. 4-5, pp. 166–169, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Qiu, Y. Gao, P. Wei, and L. Wang, “Organic light-emitting diodes with improved hole-electron balance by using copper phthalocyanine/aromatic diamine multiple quantum wells,” Applied Physics Letters, vol. 80, no. 15, pp. 2628–2630, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. J.-W. Kang, S.-H. Lee, H.-D. Park et al., “Low roll-off of efficiency at high current density in phosphorescent organic light emitting diodes,” Applied Physics Letters, vol. 90, no. 22, Article ID 223508, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Yasuda, Y. Yamaguchi, D.-C. Zou, and T. Tsutsui, “Carrier mobilities in organic electron transport materials determined from space charge limited current,” Japanese Journal of Applied Physics, vol. 41, no. 9, pp. 5626–5629, 2002. View at Google Scholar · View at Scopus
  15. M. A. Khan, W. Xu, K.-U. Khizar-Ul-Haq et al., “Electron mobility of 4,7-diphyenyl-1,10-phenanthroline estimated by using space-charge-limited currents,” Journal of Applied Physics, vol. 103, no. 1, Article ID 014509, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Xu, Y. Yue, H. Wang, L. Chen, Y. Hao, and B. Xu, “Single-crystal structure, photophysical characteristics and electroluminescent properties of bis(2-(4-trifluoromethyl-2-hydroxyphenyl) benzothiazolate)zinc,” Journal of Luminescence, vol. 132, no. 4, pp. 919–923, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Zhang, Z. Chen, L. Xiao, B. Qu, and Q. Gong, “High-color-quality blue top-emitting organic light-emitting diodes with enhanced contrast ratio,” The Japanese Journal of Applied Physics, vol. 52, Article ID 05DC17, p. 4, 2013. View at Google Scholar