Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2014, Article ID 517878, 6 pages
http://dx.doi.org/10.1155/2014/517878
Research Article

Fabrication of Antireflection Nanodiamond Particle Film by the Spin Coating Deposition Technique

1Department of Mechanical Engineering and Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan
2Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, Taipei 106, Taiwan
3Institute of Mechatronic Engineering, National Taipei University of Technology, Taipei 106, Taiwan

Received 6 May 2014; Revised 23 May 2014; Accepted 23 May 2014; Published 14 July 2014

Academic Editor: Ching-Song Jwo

Copyright © 2014 Chii-Ruey Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. C. Chou and S. H. Lee, “Rheological behavior and tribological performance of a nanodiamond-dispersed lubricant,” Journal of Materials Processing Technology, vol. 201, no. 1–3, pp. 542–547, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. C.-R. Lin, D.-H. Wei, M.-K. BenDao, H.-M. Chang, W.-E. Chen, and J.-A. Lee, “Effects of surface modification of nanodiamond particles for nucleation enhancement during its film growth by microwave plasma jet chemical vapour deposition technique,” Advances in Materials Science and Engineering, vol. 2014, Article ID 937159, 5 pages, 2014. View at Publisher · View at Google Scholar
  3. W. H. Liao, C. R. Lin, and D. H. Wei, “Effect of CH4 on the growth behavior, structure, and transparent properties of ultrananocrystalline diamond films synthesized by focused microwave Ar/CH4/H2 jets,” Applied Surface Science, vol. 27, pp. 324–330, 2013. View at Google Scholar
  4. C. Lu, S. B. Tian, C. Z. Gu, and J. J. Li, “Grain boundary effect on the superconducting transition of microcrystalline boron-doped diamond films,” Diamond and Related Materials, vol. 20, no. 2, pp. 217–220, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Li, D. Sang, S. Cheng et al., “Epitaxial growth of ZnO nanorods on diamond and negative differential resistance of n-ZnO nanorod/p-diamond heterojunction,” Applied Surface Science, vol. 280, pp. 201–206, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Pan, L. Hang, Z. Wu, and Y. Yin, “Design and fabrication of ultra broadband infrared antireflection hard coatings on ZnSe in the range from 2 to 16 μm,” Infrared Physics and Technology, vol. 52, no. 5, pp. 193–195, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. G. G. Bhatt, A. L. Patel, M. S. Desai, and C. J. Panchal, “Laser induced damage studies on Al2O3, SiO2, and MgF2 thin films for anti-reflection coating application in high power laser diode,” Journal of Nano & Electronic Physics, vol. 5, Article ID 02016, 2013. View at Google Scholar
  8. W. Glaubitt and P. Löbmann, “Antireflective coatings prepared by sol-gel processing: principles and applications,” Journal of the European Ceramic Society, vol. 32, no. 11, pp. 2995–2999, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. A. G. Kutsay, N. V. Gontar, S. N. Novikov et al., “Diamond-like carbon films in multilayered interference coatings for IR optical elements,” Diamond & Related Materials, vol. 10, pp. 1846–1849, 2001. View at Publisher · View at Google Scholar
  10. H. Krüger, A. Hertwig, U. Beck, and E. Kemnitz, “Low temperature sol-gel metal oxide and fluoride layer stacks for optical applications,” Thin Solid Films, vol. 518, no. 21, pp. 6080–6086, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C. R. Lin, H. M. Chang, and C. K. Chang, “Fabrication of high transparency diamond-like carbon film coating on D263T glass at room temperature as an antireflection layer,” International Journal of Photoenergy, vol. 2013, Article ID 612163, 8 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. C.-R. Lin, D.-H. Wei, M.-K. BenDao, W.-E. Chen, and T.-Y. Liu, “Development of high-performance UV detector using nanocrystalline diamond thin film,” International Journal of Photoenergy, vol. 2014, Article ID 452192, 2014, In press. View at Google Scholar
  13. C. W. Padgett, O. Shenderova, and D. W. Brenner, “Thermal conductivity of diamond nanorods: molecular simulation and scaling relations,” Nano Letters, vol. 6, no. 8, pp. 1827–1831, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Lifshitz, C. H. Lee, Y. Wu, W. J. Zhang, I. Bello, and S. T. Lee, “Role of nucleation in nanodiamond film growth,” Applied Physics Letters, vol. 88, Article ID 243114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Makino, H. Kato, S. Ri, S. Yamasaki, and H. Okushi, “Homoepitaxial diamond p-n+ junction with low specific on-resistance and ideal built-in potential,” Diamond and Related Materials, vol. 17, no. 4-5, pp. 782–785, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Hanada, K. Matsuzaki, and T. Sano, “Nanocrystalline diamond films fabricated by sol-gel technique,” Surface Science, vol. 601, no. 18, pp. 4502–4505, 2007. View at Publisher · View at Google Scholar · View at Scopus