Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2014, Article ID 839106, 7 pages
http://dx.doi.org/10.1155/2014/839106
Research Article

The Influence of Lead Concentration on Photocatalytic Reduction of Pb(II) Ions Assisted by Cu-TiO2 Nanotubes

1School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Seberang Perai Selatan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
2Nanotechnology & Catalysis Research Centre (NANOCAT), 3rd Floor, Block A, Institute of Postgraduate Studies (IPS), University of Malaya, 50603 Kuala Lumpur, Malaysia

Received 9 November 2013; Revised 19 December 2013; Accepted 19 December 2013; Published 12 January 2014

Academic Editor: Tian-Yi Ma

Copyright © 2014 Srimala Sreekantan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. K. Srivastava and C. B. Majumder, “Novel biofiltration methods for the treatment of heavy metals from industrial wastewater,” Journal of Hazardous Materials, vol. 151, no. 1, pp. 1–8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Ibitz, “Environmental policy coordination in ASEAN: the case of waste from electrical and electronic equipment,” Austrian Journal of South-East Asian Studies, vol. 5, p. 30, 2012. View at Google Scholar
  3. S. Sthiannopkao and M. H. Wong, “Handling e-waste in developed and developing countries: initiatives, practices, and consequences,” Science of the Total Environment, vol. 463, p. 1147, 2013. View at Google Scholar
  4. S. Babel and T. A. Kurniawan, “Low-cost adsorbents for heavy metals uptake from contaminated water: a review,” Journal of Hazardous Materials, vol. 97, no. 1–3, pp. 219–243, 2003. View at Google Scholar · View at Scopus
  5. M. A. Barakat, “New trends in removing heavy metals from industrial wastewater,” Arabian Journal of Chemistry, vol. 4, no. 4, pp. 361–377, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. ICF 2011, Electronics Waste Management in the United States Through 2009, U.S. Environmental Protection Agency.
  7. L. Murruni, F. Conde, G. Leyva, and M. I. Litter, “Photocatalytic reduction of Pb(II) over TiO2: new insights on the effect of different electron donors,” Applied Catalysis B, vol. 84, no. 3-4, pp. 563–569, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Kabra, R. Chaudhary, and R. L. Sawhney, “Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review,” Industrial and Engineering Chemistry Research, vol. 43, no. 24, pp. 7683–7696, 2004. View at Google Scholar · View at Scopus
  9. R. O. Abdel Rahman, H. A. Ibrahium, and Y. T. Hung, “Liquid radioactive wastes treatment: a review,” Water, vol. 3, p. 551, 2011. View at Google Scholar
  10. M. Kitano, M. Matsuoka, M. Ueshima, and M. Anpo, “Recent developments in titanium oxide-based photocatalysts,” Applied Catalysis A, vol. 325, no. 1, pp. 1–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. A. L. Linsebigler, G. Lu, and J. T. Yates Jr., “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results,” Chemical Reviews, vol. 95, no. 3, pp. 735–758, 1995. View at Google Scholar · View at Scopus
  12. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and J. Ye, “Nano-photocatalytic materials: possibilities and challenges,” Advanced Materials, vol. 24, no. 2, pp. 229–251, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. Y.-C. Nah, I. Paramasivam, and P. Schmuki, “Doped TiO2 and TiO2 nanotubes: synthesis and applications,” ChemPhysChem, vol. 11, no. 13, pp. 2698–2713, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. C. A. Grimes, “Synthesis and application of highly ordered arrays of TiO2 nanotubes,” Journal of Materials Chemistry, vol. 17, no. 15, pp. 1451–1457, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. Su and W. Zhou, “Formation, morphology control and applications of anodic TiO2 nanotube arrays,” Journal of Materials Chemistry, vol. 21, no. 25, pp. 8955–8970, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Roy, S. Berger, and P. Schmuki, “TiO2 nanotubes: synthesis and applications,” Angewandte Chemie International Edition, vol. 50, no. 13, pp. 2904–2939, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. C. W. Lai and S. Sreekantan, “Study of WO3 incorporated C-TiO2 nanotubes for efficient visible light driven water splitting performance,” Journal of Alloys and Compounds, vol. 547, p. 43, 2013. View at Google Scholar
  18. X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications and applications,” Chemical Reviews, vol. 107, no. 7, pp. 2891–2959, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. C. W. Lai and S. Sreekantan, “Preparation of hybrid WO3-TiO2 nanotube photoelectrodes using anodization and wet impregnation: improved water-splitting hydrogen generation performance,” International Journal of Hydrogen Energy, vol. 38, p. 2156, 2013. View at Google Scholar
  20. H. Shon, S. Phuntsho, Y. Okour et al., “Visible light responsive titanium dioxide (TiO2),” Journal of the Korean Industrial and Engineering Chemistry, vol. 19, no. 1, pp. 1–16, 2008. View at Google Scholar · View at Scopus
  21. W. Zhang, Y. Li, S. Zhu, and F. Wang, “Copper doping in titanium oxide catalyst film prepared by dc reactive magnetron sputtering,” Catalysis Today, vol. 93-95, pp. 589–594, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Xin, P. Wang, D. Ding, J. Liu, Z. Ren, and H. Fu, “Effect of surface species on Cu-TiO2 photocatalytic activity,” Applied Surface Science, vol. 254, no. 9, pp. 2569–2574, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Xu, A. J. Du, J. Liu, J. Ng, and D. D. Sun, “Highly efficient CuO incorporated TiO2 nanotube photocatalyst for hydrogen production from water,” International Journal of Hydrogen Energy, vol. 36, no. 11, pp. 6560–6568, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Yan and F. Zhou, “TiO2 nanotubes: structure optimization for solar cells,” Journal of Materials Chemistry, vol. 21, no. 26, pp. 9406–9418, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Kubacka, M. Fernández-García, and G. Colón, “Advanced nanoarchitectures for solar photocatalytic applications,” Chemical Reviews, vol. 112, no. 3, pp. 1555–1614, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. C. W. Lai and S. Sreekantan, “Dimensional control of TiO2 nanotube arrays with H2O2 content for high photoelectrochemical water splitting performance,” Micro & Nano Letters, vol. 7, p. 443, 2012. View at Google Scholar
  27. S. Sreekantan, L. C. Wei, and Z. Lockman, “Extremely fast growth rate of TiO2 nanotube arrays in electrochemical bath containing H2O2,” Journal of the Electrochemical Society, vol. 158, no. 12, pp. C397–C402, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Ahmaruzzaman and D. K. Sharma, “Adsorption of phenols from wastewater,” Journal of Colloid and Interface Science, vol. 287, no. 1, pp. 14–24, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. M. I. Litter, “Heterogeneous photocatalysis: transition metal ions in photocatalytic systems,” Applied Catalysis B, vol. 23, no. 2-3, pp. 89–114, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. C. A. Grimes and G. K. Mor, Material Properties of TiO2 Nanotube Arrays: Structural, Elemental, Mechanical, Optical and Electrical. TiO2 Nanotube Arrays, Springer, New York, NY, USA, 2009.
  31. L. N. Dias, M. V. B. Pinheiro, and K. Krambrock, “Radiation-induced defects in euclase: formation of O hole and Ti3+ electron centers,” Physics and Chemistry of Minerals, vol. 36, no. 9, pp. 519–525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Yan and H. Bhadeshia, “Mechanism and kinetics of solid-state transformation in high-temperature processed linepipe steel,” Metallurgical and Materials Transactions A, vol. 44, pp. 5468–5477, 2013. View at Google Scholar
  33. M. Rotan, E. Rytter, M.-A. Einarsrud, and T. Grande, “Solid state mechanism leading to enhanced attrition resistance of alumina based catalyst supports for Fischer-Tropsch synthesis,” Journal of the European Ceramic Society, vol. 33, pp. 1–6, 2013. View at Google Scholar
  34. T. Kanki, H. Yoneda, N. Sano, A. Toyoda, and C. Nagai, “Photocatalytic reduction and deposition of metallic ions in aqueous phase,” Chemical Engineering Journal, vol. 97, no. 1, pp. 77–81, 2004. View at Publisher · View at Google Scholar · View at Scopus