Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2017, Article ID 7284367, 6 pages
https://doi.org/10.1155/2017/7284367
Research Article

Tandem Solar Cells Based on Cu2O and c-Si Subcells in Parallel Configuration: Numerical Simulation

1University POLITEHNICA of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
2Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania

Correspondence should be addressed to Valerică Ninulescu; moc.liamg@acirelav.ucselunin

Received 24 April 2017; Revised 16 June 2017; Accepted 6 July 2017; Published 8 August 2017

Academic Editor: Christin David

Copyright © 2017 Mihai Răzvan Mitroi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. P. White, N. N. Lal, and K. R. Catchpole, “Tandem solar cells based on high-efficiency c-Si bottom cells: top cell requirements for >30% efficiency,” IEEE Journal of Photovoltaics, vol. 4, no. 1, pp. 208–214, 2014. View at Google Scholar
  2. C. Ulbrich, C. Zahren, A. Gerber et al., “Matching of silicon thin-film tandem solar cells for maximum power output,” International Journal of Photoenergy, vol. 2013, Article ID 314097, 7 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Taguchi, A. Yano, S. Tohoda et al., “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE Journal of Photovoltaics, vol. 4, pp. 96–99, 2014. View at Google Scholar
  4. P. Löper, S.-J. Moon, S. M. d. Nicolas et al., “Organic–inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells,” Physical Chemistry Chemical Physics, vol. 17, p. 1619, 2015. View at Publisher · View at Google Scholar · View at Scopus
  5. H. M. Futscher and B. Ehrler, “Efficiency limit of perovskite/Si tandem solar cells,” ACS Energy Letters, vol. 1, no. 4, pp. 863–868, 2016. View at Google Scholar
  6. R. Asadpour, R. V. K. Chavali, M. R. Khan, and M. A. Alam, “Bifacial Si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (η T*∼ 33%) solar cell,” Applied Physics Letters, vol. 106, article 243902, 2015. View at Google Scholar
  7. A. Hadipour, B. d. Boer, and P. W. M. Blom, “Device operation of organic tandem solar cells,” Organic Electronics, vol. 9, pp. 617–624, 2008. View at Google Scholar
  8. L. Yang, H. Zhou, S. C. Price, and W. You, “Parallel-like bulk heterojunction polymer solar cells,” Journal of the American Chemical Society, vol. 134, pp. 5432–5435, 2012. View at Google Scholar
  9. A. K. Baranwal, T. Shiki, Y. Ogomi, S. S. Pandey, T. Ma, and S. Hayase, “Tandem dye-sensitized solar cells with a back-contact bottom electrode without a transparent conductive layer,” RSC Advances, vol. 4, pp. 47735–47742, 2014. View at Google Scholar
  10. S. Diao, X. Zhang, Z. Shao, K. Ding, J. Jie, and X. Zhang, “12.35% efficient graphene quantum dots/silicon heterojunction solar cells using graphene transparent electrode,” Nano Energy, vol. 31, pp. 359–366, 2017. View at Google Scholar
  11. K. Masuko, M. Shigematsu, T. Hashiguchi et al., “Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE Journal of Photovoltaics, vol. 4, pp. 1433–1435, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. B. K. Meyer, A. Polity, D. Reppin et al., “The physics of copper oxide (Cu2O),” Chapter 6: Semiconductors and Semimetals, vol. 88, pp. 201–226, 2013. View at Google Scholar
  13. Y. Takiguchi and S. Miyajima, “Device simulation of cuprous oxide heterojunction solar cells,” Japanese Journal of Applied Physics, vol. 54, no. 11, article 112303, 2015. View at Google Scholar
  14. M. R. Mitroi, V. Ninulescu, and L. Fara, “Performance optimization of solar cells based on heterojunctions with Cu2O–numerical analysis,” Journal of Energy Engineering, pp. 1943–7897, 2017. View at Publisher · View at Google Scholar
  15. T. Minami, Y. Nishi, and T. Miyata, “Efficiency enhancement using a Zn1−xGex-O thin film as an n-type window layer in Cu2O–based heterojunction solar cells,” Applied Physics Express, vol. 9, article 052301, 2016. View at Google Scholar
  16. K. Ishibashi, Y. Kimura, and M. Niwano, “An extensively valid and stable method for derivation of all parameters of a solar cell from a single current-voltage characteristic,” Journal of Applied Physics, vol. 103, article 094507, 2008. View at Google Scholar
  17. Y. Hamakawa, Ed., Thin-Film Solar Cells: Next Generation Photovoltaics and Its Applications, Berlin, Springer, 2004.
  18. S. Reynolds and V. Smirnov, “Modelling performance of two- and four-terminal thin-film silicon tandem solar cells under varying spectral conditions,” Energy Procedia, vol. 84, pp. 251–260, 2015. View at Google Scholar
  19. R. E. Brandt, M. Young, H. H. Park et al., “Band offsets of n-type electron-selective contacts on cuprous oxide (Cu2O) for photovoltaics,” Applied Physics Letters, vol. 105, no. 26, article 263901, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. Ø. Nordseth, R. Kumar, K. Bergum et al., “Optical analysis of a ZnO/Cu2O subcell in a silicon-based tandem heterojunction solar cell,” Green and Sustainable Chemistry, vol. 7, pp. 57–69, 2017. View at Google Scholar
  21. ASTM G173-03, “Reference spectra derived from SMARTS v. 2.9.2,” 2012, March, 2017, http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html. View at Google Scholar
  22. T. Aernouts, Organic Bulk Heterojunction Solar Cells: From Single Cell towards Fully Flexible Photovoltaic Module, [Ph.D. Thesis], Departement Natuurkunde, Faculteit Wetenschappen, Katholieke Universiteit Leuven, Belgium, 2006, March 2017, https://lirias.kuleuven.be/bitstream/1979/402/5/PhD.
  23. X. Chao, Y. Ruo-He, and G. Kui-Wei, “Photovoltage analysis of a heterojunction solar cell,” Chinese Physics B, vol. 20, no. 5, article 057302, 2011. View at Google Scholar
  24. M. Abderrezek, M. Fathi, S. Mekhilef, and F. Djahli, “Effect of temperature on the GaInP/GaAs tandem solar cell performances,” International Journal of Renewable and Sustainable Energy, vol. 5, no. 2, pp. 629–634, 2015. View at Google Scholar
  25. P. Singh and N. M. Ravindra, “Temperature dependence of solar cell performancean analysis,” Solar Energy Materials and Solar Cells, vol. 101, pp. 36–45, 2012. View at Google Scholar
  26. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica, vol. 34, pp. 149–154, 1967. View at Google Scholar
  27. F. Attivissimo, A. D. Nisio, M. Savino, and M. Spadavecchia, “Uncertainty analysis in photovoltaic cell parameter estimation,” IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 5, pp. 1334–1342, 2012. View at Google Scholar
  28. P. Singh, S. N. Singh, and M. LalM. Husain, “Temperature dependence of I–V characteristics and performance parameters of silicon solar cell,” Solar Energy Materials and Solar Cells, vol. 92, pp. 1611–1616, 2008. View at Google Scholar
  29. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Solar Energy Materials and Solar Cells, vol. 92, no. 11, pp. 1305–1310, 2008. View at Google Scholar
  30. C. Malerba, F. Biccari, C. L. A. Ricardo, M. D’Incau, P. Scardi, and A. Mittiga, “Absorption coefficient of bulk and thin film Cu2O,” Solar Energy Materials and Solar Cells, vol. 95, no. 10, pp. 2848–2854, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. M. R. Mitroi, V. Iancu, L. Fara, and M. L. Ciurea, “Numerical analysis of J–V characteristics of a polymer solar cell,” Progress in Photovoltaics: Research and Applications, vol. 19, no. 3, pp. 253–377, 2011. View at Google Scholar
  32. R. S. AbdelHady, “Detecting the parameters of solar cells using efficient curve fitting techniques,” International Journal of Engineering Research and Technology, vol. 7, no. 3, pp. 185–199, 2014. View at Google Scholar
  33. J. Cubas, S. Pindado, and C. d. Manuel, “Explicit expressions for solar panel equivalent circuit parameters based on analytical formulation and the Lambert W-function,” Energies, vol. 7, pp. 4098–4115, 2014. View at Google Scholar
  34. A. Bărar, D. Mănăilă-Maximean, O. Dănilă, and M. Vlădescu, “Parameter extraction of an organic solar cell using asymptotic estimation and Lambert W function,” in Proceedings SPIE 10010, Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies VIII, 2016.
  35. R. Matson, R. Bird, and K. Emery, “Terrestrial solar spectra, solar simulation and solar cell efficiency measurement,” Tech. Rep., Tech. Rept. SERI/TR-612-964: DE82002082, U.S. Department of Energy, ON, 1981. View at Google Scholar
  36. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Transactions on Electron Devices, vol. ED-31, no. 5, 1984. View at Google Scholar
  37. D. Zhanga, W. Soppea, and R. E. I. Schroppa, “Design of 4-terminal solar modules combining thin-film wide-bandgap top cells and c-Si bottom cells,” Energy Procedia, vol. 77, pp. 500–507, 2015. View at Google Scholar
  38. F. Biccari, Defects and Doping in Cu2O, [Ph.D. Thesis], Universita di Roma, Italia, 2009, March 2017, http://www.phys.uniroma1.it/fisica/sites/default/files/DOTT_FISICA/MENU/03DOTTORANDI/TesiFin22/Biccari.pdf.