Research Article

Comparative Analysis of Reliable, Feasible, and Low-Cost Photovoltaic Microgrid for a Residential Load in Rwanda

Table 4

Comparison of different state-of-the-art results based on economic analysis and the proposed approach.

ReferenceStudy location & irradiation (kWh/m2/d)Model architecture with power ratingsPrincipal economic indicators (cost units)Electrical production and/or power consumption.
Initial capital costOperating cost ($/Yr.)NPCLCOE

[18]Baru Sahib in India & [7.57]PV: 6 kW
DG: 3 kW
Converter: 1 kW
11,530$5,06776,307$1.211$/kWhConsumption (kWh/Yr.)
AC load demand: 13kWh/day with 2.5 kWp
[19]Residential load of Sunderbans in India & [4.978]Case A: hybrid (PV-FC)
PV: 2 kW
FC: 0.1 kW
Electrolyzer: 0.5 kW
BT: 8
Converter: 1 kW
18,375$353$21,141$2.473$/kWhProduction (kWh/Yr.)
PV: 2416, i.e., 98%
FC: 52, i.e., 2%
Consumption (kWh/Yr.)
AC load: 1095, i.e., 57%
Electrolyzer load: 822, i.e., 43%
Case B: Hybrid (WT-FC)
WT: 10 kW
FC: 0.1 kW
Electrolyzer: 1.5 kW
BT: 24
Converter: 0.5 kW
31,450$1,512$50,785$3.628$/kWhProduction (kWh/Yr.)
WT: 5,111, i.e., 98%
FC: 92, i.e., 2%
Consumption (kWh/Yr.)
AC load: 1,095 i.e.43%
Electrolyzer load: 1,442, i.e., 57%.
Case C
Hybrid (PV-WT-FC)
PV: 0.5 kW
WT: 10 kW
FC: 0.1 kW
Electrolyser:1 kW
BT: 8
Converter: 0.5 kW
29,475$931$41,373$2.956$/kWhProduction (kWh/Yr.)
PV: 604, i.e., 10%
WT: 5,111 i.e.88%
FC: 106, i.e., 2%
Consumption (kWh/Yr.)
AC load: 1,090, i.e., 39%
Electrolyzer load: 1,714, i.e., 61%
[20]Technical (Matlab) and economic (Homer Pro) Papua in Indonesia & [4.74]Pure PV
BT: 12 V/100 Ah
Pure DG
: 186.19$203,271$0.64$/kWhLoad consumption (kWh/day)
AC load: 45,6
0.54$/1 L320,661$1.17
$/kWh
(1$ =14,877.22Rp)
[21]Off-grid rural electrification in Rwanda & [5.4]Hyd: 10 kW
WT: 100 kW
PV: 10 kW
: 80,000$
: 20,000$
: 16,000$
(1 kWh each): 2,400$;
: 30,000$
1,495.49$41,210.80$0.0560$/kWhProduction (kWh/Yr.)
Hyd: 122,716, i.e., 98.7%
PV: 1,620, i.e., 1.3%
Consumption (kWh/day)
AC load: 158.1
Peak:18 kW
Hyd (1Turbine):
10 kW
PV: 1.09 kW
Converter: 10 kW
Hyd: 10 kW
WT: 100 kW
WT:100 kW
PV: 10 kW
[22]Rural area in the southern city of BangladeshHybrid (Grid-PV-WT)
Grid: 999,999 kW
PV: 150 kW
WT (3 WGs)
Converter: 180 kW
600,000$-4,977$535,661$0.0995$/kWhProduction (kWh/Yr.)
WT: 124,625, i.e., 28.57%
PV: 198,814, i.e., 45.58%
Grid purchases: 112,747, i.e., 25.85%
Consumption (kWh/Yr.)
AC load: 238,976, i.e., 57.4%
Grid sales:177328, i.e., 42.6%
Off-grid (WT-PV)
[23]The hybrid (PV-FC) power system residential community in Sharjah (150houses)PV: 517 kW
FC: 750 kW
H2 tank: 900 kg
Inverter: 738 kW
3.07 million$145$/MWhProduction (MWh/Yr.)
PV: 1052.68, i.e., 52%
FC: 980.32, i.e., 48%
Consumption (MWh/Yr.)
AC load: 238,976, i.e., 80.7%
Electrolyzer load: 286.37, i.e., 14.08%
Excess power: 37.53, i.e., 1.8%
Losses in power conversion: 68.37, i.e., 3.3%
[12]HPSs for typical residential loads for the rural community in South Africa.PV: 5 kW
BT (30): 720 Ah
Regulator: 12/24 V,5A
DG: 5.5 kW, 50 Hz @ 3,000 rpm
Converter: 6 kW
: 4,250$
: 269$
: 15,398$ (0.7$/L)
: 32,990$ (0.9$/L)
: 313$
: 3,731$
62,402$ for (0.7$/L) 65,833$ for (0.9$/L)Upington city results
RF: 0.75
Lowest diesel used: 1,267 [L/year] at (0.7$/1 L) & 1,275 [L/year] at (0.9$/1 L)
Lowest emission of CO2
3.336 [tons/year] for diesel 1 price (0.7$/1 L)
3.359 [tons/year] for diesel 2 price (0.9$/1 L)
[16]First site location: Pulau Banggi in Malaysia
Solar radiation averaging [4.8–6.1]Optimized Hybrid 1PV/(G1-G5) Diesels/Battery system (42.38% RE)536,081$9,345,510$0.302$/kWhExisting LCOE: 0.5352$/kWh
The improvement: 0.2332$/kWh
Load consumption: 6,632.86 kWh/day with 476.23 kWp
Second site location: Tanjung Labian in Malaysia
Solar radiation averaging [4.8 –6.1]Optimized Hybrid 1PV/(G1-G3) Diesels/Battery system (39.89% RE)302,203$5,571,168$0.312$/kWhThe improvement: 0.2234$/kWh
Load consumption: 3,830.07 kWh/day with 417.55 kWp
[24]Khorramabad in Iran (data of 2012)
Solar radiation averaging [5.15]
: 6,900$
: 2,500$
: 1,200$
: 1,500$-3,000$
(1.24 kW): 3,900$
215,500$3,910$234,843$7.367$/kWhScheme A is not economical due to low efficiency of fuel cells
Residential load consumption: 19 kWh/day with 2.6 kWp
PV: 6,900$
WT(1.24 kW): 3,900$
DG (0.25$/L): 3,500$
Bat:6 V/1.156 ah: 1,200$; converter (efficiency:90%): 800$
24,600$713$28,128$0.871
$/kWh
Scheme B: Economical and recommended by the authors.
Residential load consumption
19 kWh/day with 2.6 kWp
[25]Optimal design: Puerto EstrellaEnergy production (kWh/Yr.)
PV: 180,475
DG: 2,789
WT: 2,988
CO2 emission: 3,169 kg/Yr.
RF: 0.99
Electricity consumption: 379 kWh/day with 88 kWp
Off-grid with PV, WT, DGPV: 160 kW
WT: 10 kW
DG: 25 kW
BT: 250
Converter: 80 kW
521,078$24,652836,210$0.473$/kWh
Optimal design for UnguiaEnergy production (kWh/Yr.)
PV: 180,475
DG: 4,553
CO2 emission: 5,120 kg/Yr.
RF: 0.98
Electricity consumption: 180 kWh/day with 38 kWp
Off-grid with PV, DGPV: 100 kW
DG: 25 kW
BT: 100
Converter: 30 kW
227,350$11,373372,736$0.444$/kWh
Optimal design: JericoEnergy production (kWh/Yr.)
PV: 267,345
DG: 5,250
CO2 emission:5923 kg/Yr. RF:0.98
Electricity consumption
213 kWh/day with 41 kWp
Off-grid with PV, DG.PV: 150 kW
DG: 25 kW
BT: 100
Converter: 40 kW
268,100$12,855445,207$0.488
$/kWh
[26]Taleghan in IranPV: 0.8 kW
WT (×2): 0.4 kW each
Inverter: 2.5 kW
BT (12 V/200 Ah): 8
22,998$21824,623$1.655$/kWhEnergy production (kWh/Yr.)
PV: 1,234 (41%)
WT: 1,794 (59%)
Energy consumption (kWh/Yr.)
AC primary load: 1992, i.e., 100%
[27]Irradiation: [4.8]Off-grid connection hybrid system
Case ADG: 10 kW
BG: 15 kW
: 1,600$/1 kW
: 2,800$/1 kW
: 370$/1 kWh
: 1,295$
: 1,000$/1 kWh
123,668$0.145-0.119$/kWhRF: 0.93
Load consumption: 117-186 kWh/day with 19 kWp
Case BPV: 5 kW
BT: 20 kW
Converter:15 kW
DG: 10 kW
BG: 15 kW
172,003$0.129$/kWhRF: 1, i.e., 100%
Load consumption: 152-242 kWh/day with 25 kWp
Case CDG: 10 kW
PV: 5 kW
BT: 20 kW
Converter:10 kW
BG: 35 kW
217,551$0.12$/kWhRF: 1, i.e., 100%
Load consumption: 248-392 kWh/day with 41 kWp
Grid-connected hybrid system
Case AGrid: 100 kW
BG: 15 kW
82,822$0.064$/kWhEnergy production
Grid purchase: 9%
Grid sales: 23%
RF: 0.91
Load consumption: 178 kWh/day with 19 kWp
Case BGrid: 100 kW
BG: 15 kW
79,538$0.064$/kWhEnergy production
Grid purchase: 10%
Grid sales: 28%
RF: 0.90
Load consumption: 182 kWh/day with 25 kWp
Case CGrid: 100 kW
BG: 30 kW
134,270$0.064$/kWhEnergy production
Grid purchase: 11%
Grid sales: 5%
RF: 0.89
Load consumption: 86 kWh/day with 41 kWp
[28]Agricultural village in Pakistan & Irradiation: [5.18-6.95]PV: 10 kW
BT:  kWh
Converter: 12 kW
BG: 08 kW
16,057.31$, i.e., 2.64 M (Rs)
Rs (2020)
864.32, i.e., 142,103 (Rs)27,248.77$, i.e., 4.48 M (Rs)0.034$/kWh or 5.51 Rs/kWhElectricity production (kWh/Yr.)
PV: 16,872, i.e., 24.6%
BG: 57,721, i.e., 75.4%
Consumption (kWh/Yr.)
AC primary load: 65,372, i.e., 100%
The proposed studyResidential home in Rwanda & Irradiation: [5.5]Case I: on-grid PV microgrid system design
Case I
PV: 18 kW
BT:  kWh
Converter: 25 kW
Grid: 999,999 kW
53,500$-2,39722,155$0.0645$/kWhElectricity production (kWh/Yr.)
PV: 26,973, i.e., 97.6%
Grid purchase: 673, i.e., 2.4%
EIRR: 2.47%
Payback period: 18.1 Yrs.
Consumption (kWh/Yr.)
AC primary load: 1,995, i.e., 7.5%
Grid sales: 24,572, i.e., 92.5%
Case II and Case III: off-grid PV microgrid system design
Case II
DG: 0.5 kW
PV: 1.16 kW
BT (1 kWh): 2
Converter Leonics model: 25 kW
19,096$1,27735,605$1.38$/kWhElectricity production (kWh/Yr.)
Excess electricity:537
PV: 1,746, i.e., 65.8% & DG: 906, i.e., 34.2%
Consumption (kWh/Yr.)
AC primary load: 1,995, i.e., 100%
Fuel used: 275 L/0.3 L/kWh.
Case III
PV: 5 kW
BT (1kWh): 10
Converter Leonics model: 25 kW
32,500$1,1237,012$1.82$/kWhElectricity production (kWh/Yr.)
Excess electricity: 5,349
PV: 7,493, i.e., 100%
Unmet electric load: 1.33
Consumption (kWh/Yr.)
AC primary load: 1,994, i.e., 100%

PV: photovoltaic array; Hyd: hydropower; WT/G: wind turbine/generator; FC: fuel cell; DG: diesel generator; BG: biomass generator; BT: battery; RF: renewable fraction; Mgt: management; : operational cost (i.e., ); EIRR: economic internal rate of return. Annual costs are less than revenues.