International Journal of Photoenergy

International Journal of Photoenergy / 2021 / Article

Review Article | Open Access

Volume 2021 |Article ID 6627491 | https://doi.org/10.1155/2021/6627491

Rasool Kalbasi, Mehdi Jahangiri, Ahmad Tahmasebi, "Comprehensive Investigation of Solar-Based Hydrogen and Electricity Production in Iran", International Journal of Photoenergy, vol. 2021, Article ID 6627491, 14 pages, 2021. https://doi.org/10.1155/2021/6627491

Comprehensive Investigation of Solar-Based Hydrogen and Electricity Production in Iran

Academic Editor: Umapada Pal
Received17 Dec 2020
Revised28 Apr 2021
Accepted28 May 2021
Published09 Jun 2021

Abstract

Hydrogen is a clean and environmentally friendly energy vector that can play an important role in meeting the world’s future energy needs. Therefore, a comprehensive study of the potential for hydrogen production from solar energy could greatly facilitate the transition to a hydrogen economy. Because by knowing the exact amount of potential for solar hydrogen production, the cost-effectiveness of its production can be compared with other methods of hydrogen production. Considering the above, it can be seen that so far no comprehensive study has been done on finding the exact potential of solar hydrogen production in different stations of Iran and finding the most suitable station. Therefore, in the present work, for the first time, using the HOMER and ArcGIS softwares, the technical-economic study of solar hydrogen production at home-scale was done. The results showed that Jask station with a levelized cost of energy equal to $ 0.172 and annual production of 83.8 kg of hydrogen is the best station and Darab station with a levelized cost of energy equal to $ 0.286 and annual production of 50.4 kg of hydrogen is the worst station. According to the results, other suitable stations were Bushehr and Deyr, and other unsuitable stations were Anzali and Khalkhal. Also, in 102 under study stations, 380 MW of solar electricity equivalent to 70.2 tons of hydrogen was produced annually. Based on the geographic information system map, it is clear that the southern half of Iran, especially the coasts of the Persian Gulf and the sea of Oman, is suitable for hydrogen production, and the northern, northeastern, northwestern, and one region in southern of Iran are unsuitable for hydrogen production. The authors of this article hope that the results of the present work will help the energy policymakers to create strategic frameworks and a roadmap for the production of solar hydrogen in Iran.

1. Introduction

1.1. The Necessity of Using Hydrogen

The continuous growth of the world’s population and economy, along with rapid urbanization, has led to a significant increase in energy demand [13]. Power supply in the traditional form is based on fossil fuels, which have problems such as not being easy to extract, polluting, and being limited to a specific geographical area [46]. Therefore, the use of renewable energy (RE) is essential for the sustainability of future energy and global security [79]. Renewable energies, due to the nature of their variability and intermittency, require large energy storage systems to be able to manage supply and demand [1012]. A good idea, which is a cost-effective solution for storing, transporting, and exporting large-scale RE, is to store hydrogen-based energy [1315].

The heat generated by each unit of hydrogen mass is 3 times greater than that of gasoline. In addition, in hydrogen combustion, only water vapor is produced. Therefore, hydrogen energy is a suitable solution for future energy needs due to the environmental problems of fossil fuels [16].

An economic evaluation of renewable hydrogen production is very important for evaluating the durability and feasibility of selecting the type of technology. In this regard, the first step is to examine the potential for renewable hydrogen production at the under study site.

1.2. Perspective of Hydrogen Production

Global hydrogen demand in 2013 was reported to be 255.3 billion m3, which in 2020 will reach 342.8 billion m3 [17]. If the hydrogen economy improves, it should attract about $ 70 billion in investment by 2030. It is also noted that the cost of producing and distributing hydrogen from renewable sources will be reduced by 50% over the next decade [18]. It is also noted that hydrogen can meet up to 10% of the global warming demand of buildings by 2050 [19].

As shown in Figure 1 for the share of RE capacity in Iran’s electricity, in April 2020 with 63 power plants, solar energy with 44% has the largest share among all renewable sources in Iran’s electricity production [20]. Therefore, the focus of the present study for investigating the prospect of renewable hydrogen production in Iran is solar energy.

1.3. Different Ways of Producing Hydrogen

Today, most of the hydrogen produced (more than 90%) is from fossil fuels such as coal and natural gas, which is considered gray hydrogen and does nothing to reduce CO2 emissions [21]. Various clean hydrogen production technologies are shown in Figure 2 [21]. As shown, the present study examines the hydrogen produced by the process of electrolysis using solar energy. In other words, the material, method, and energy source used in the present work are marked in yellow in Figure 2.

Water electrolysis is the process of breaking down water into oxygen and hydrogen, which is caused by an electric current. Today, about 4% of the world’s hydrogen is produced by electrolysis. Economically, the cost of producing green hydrogen is 1.5-5 times greater than producing hydrogen from natural gas but with a 50% reduction in the price of electrolysis, as well as a reduction in the price of RE, green hydrogen will eventually become economical and be promoted [18]. The price range of hydrogen production technologies based on the energy source is shown in Figure 3 [21]. Based on the results of Figure 3 for hydrogen produced from solar energy, the price per kilogram will be $ 3.41-16.01 [21]. According to studies conducted by the authors of the present work, the reason for this wide range can be the difference in radiation intensity, cloudiness index, air temperature, the wide price range of different solar cell technologies, etc., in different parts of the world. Despite the high price, solar energy is the most abundant and available type of RE, which makes it a very likely option for future hydrogen production [22].

The performance ranking of different sources of hydrogen production is shown in Figure 4 [23]. As can be seen, solar energy has the best performance in terms of social, environmental, and reliability performance among different types of RE. Also, in terms of economic performance, solar energy ranks second after hydro energy. In terms of technical performance, after nuclear and wind energy, solar energy is in third place.

1.4. Different Uses of Hydrogen

Reducing carbon and decarbonizing for use in transportation and electricity generation sectors is one of the goals of hydrogen production from various energy sources [18]. As shown in Figure 5, hydrogen can facilitate the connection between electricity and buildings, transportation, and industry [24]. Hydrogen produced from fossil fuels, which is widely used in several industrial sectors such as refineries, ammonia production, and chemical can be technically replaced by renewable hydrogen. In the home sector, injectable hydrogen into the gas network can reduce natural gas consumption. In addition, excess electricity can be converted to hydrogen and used as heat in winter [24]. In the transportation sector, vehicles based on fuel cells (FCs) that consume hydrogen have been considered because of their low carbon production. The important point is that in this regard, due to the limited capacity of batteries for long distances, the market for FC-based vehicles is very expandable [24].

1.5. Electrolysis Technologies in Iran

Electrolysis technologies are classified based on the electrolyte used in the electrolysis cell [25]. Proton exchange membrane (PEM) electrolysis is more common in Iran and is used in transportation, home generators, and small power plants [26] and has the greatest potential in the Iranian market for portable applications [27]. After PEM-type electrolysis, alkaline electrolysis with liquid electrolyte is widely used in Iran due to its high process efficiency. However, due to the possibility of liquid electrolyte leakage, it is not used for transportation, and its use is limited to military industries and small space applications [28].

1.6. Literature Review

In order to achieve a fully developed hydrogen economy and turn hydrogen into an important element for the energy market, extensive and significant research has been conducted on the potential for renewable hydrogen production in various parts of the world. Table 1 shows the literature review of recent studies in Iran.


Ref.PurposeMethodologyResults

Qadrdan and Shayegan 2008 [29]Economic assessment of hydrogen fueling station in IranHOMER software(i) Hydrogen cost from natural gas: 3-7 $/kg
(ii) Hydrogen cost from electrolysis: 6-10 $/kg
Shiroudi and Taklimi 2011 [30]Solar hydrogen production in Taleghan, IranHOMER softwareExcess electricity can be stored in the form of hydrogen
Shiroudi et al. 2013 [31]Assessment of photovoltaic- (PV-) hydrogen system in Taleghan, IranHOMER softwareTotal net present cost (NPC) and levelized cost of energy (LCOE) are 237509 $ and 3.35 $/kWh, respectively
Nasiri et al. 2015 [32]Status of hydrogen and FC in IranTechnological innovation system approachSupportive laws and regulation are needed for the mobilization of financial resources
Mostafaeipour et al. 2016 [33]Wind hydrogen production in Fars Province, IranStatistical and analytical solutionAbadeh has better potential with producing hydrogen for 22 cars/week
Homayouni et al. 2016 [34]Techno-econo-enviro assessment of solar hydrogen to supply combined cooling, heat, and power load in Tehran, IranParticle swarm optimization simulationThe most economic system has solar and fossil fuel with avoided 75% of CO2 emission in comparison by standalone diesel system
Fazelpour et al. 2016 [35]Economic analysis of FC-based in Tehran, IranHOMER softwareWind-hydrogen-battery system with total NPC 63190 $ is the most economical system
Alavi et al. 2016 [36]Wind-hydrogen assessment in Sistan and Baluchestan Province, IranStatistical and analytical solutionHighest amount of hydrogen is 39.82 ton/year that related to Lutak station
Ramazankhani et al. 2016 [37]Hydrogen production from geothermal in IranMulticriteria decision-making methodsEast Azarbaijan is the best location for hydrogen production
Alavi et al. 2017 [38]Wind-hydrogen feasibility in Chabahar, IranStatistical and analytical solutionHighest amount of hydrogen is 194.36 ton/year that related to Vestas V164 wind turbine
Qolipour et al. 2017 [39]Wind-solar feasibility for electric and hydrogen production for Hendijan, IranHOMER software3153.7 MWh of electricity and 31680 kg hydrogen are produced
Mostafaeipour et al. 2017 [40]Assessment of solar-hydrogen in Kerman Province, IranData envelopment analysis (DEA) and Technique for Order of Preference by Similarity to Ideal Solution methodsLalezar is the first priority
Rezaei et al. 2018 [41]Hydrogen production from seawater using wind turbine in coasts of IranStatistical and analytical solutionAnzali has the best potential, and 22 EWT direct wind 52/900 could produce the hydrogen for all cars in Anzali
Ashrafi et al. 2018 [42]Hydrogen production from wind in 5 regions of Iran by 3 extrapolating Weibull methodsStatistical and analytical solution, geographic information system (GIS) softwareAmount of hydrogen production is shown by GIS maps
Rezaei et al. 2019 [43]Hydrogen production from wind-solar in 10 cities of IranStatistical and analytical solution, RETScreen softwareManjil has the greatest amount of wind hydrogen (91 kg/day), and Zahedan has the greatest amount of solar hydrogen (20 kg/day)
Mostafaeipour et al. 2019 [44]Wind-hydrogen assessment in Firuzkuh, IranHOMER software, DEA, and DEMATEL methodsAnnually 1014 kg hydrogen produce by using GE 1.5 sl wind turbine
Jahangiri et al. 2019 [45]Provision of electricity and hydrogen for Bandar Abbas, IranHOMER softwareLowest prices of produced hydrogen and electricity are 0.496 $/kg and 1.55 $/kWh, respectively

1.7. Novelties of Present Work

According to the literature review of work done in Iran, so far, all studies have been case studies and have been limited to a specific city or province. Given the important role of hydrogen in the future portfolio of global energy, it is necessary to do comprehensive work to find the potential of all stations in Iran. Also, finding the most suitable solar hydrogen station can help Iranian energy policymakers. In addition, most of the works done are purely potential assessment, and technical-economic optimization has not been done. Therefore, in the present work, for the first time, the potential of hydrogen production from water electrolysis in 102 stations in Iran at home-scale has been evaluated. The cost of renewable electricity produced for water electrolysis is calculated taking into account the up-to-date prices of equipment as well as the actual annual interest rate, and the results are presented in the form of GIS maps for ease of decision-making.

2. Under Study Stations

A total of 102 stations have been evaluated to assess the potential of solar electricity and hydrogen in Iran. The reason for choosing these stations was the availability of 20-year average climate data on the NASA website. The location of the under study stations on the Iran map and their annual average climate data, i.e., the solar radiation intensity and the air clearness index, are shown in Figures 6(a) and 6(b), respectively. Solar radiation data and air clearness index will be used as input to the HOMER software to perform technical-economic calculations.

3. Software’s and Data Used

The HOMER and ArcGIS softwares are used for the analysis in the present study. The HOMER software is used to find the amount of electricity generated by solar cells, and the ArcGIS software is used to display suitable and unsuitable places to use solar energy.

3.1. Solar-Based Electricity Production

The HOMER software uses the following equation for the amount of solar electricity generated [47]:where is the rated capacity of PV cells in terms of kW, is the derating factor, is the solar radiation collides with the surface of the PV under operating conditions in terms of kW/m2, is the solar radiation collides with the surface under standard test conditions and is equal to 1 kW/m2, and is the output power from PV in terms of kW.

For the solar cells used in the present work, the lifetime is 20 years [48], the derating factor is 90% [49], the angle of the solar cells is equal to the latitude of the under study site [50], the orientation of the solar cells is to the south [51], and the ground reflection coefficient is 20% [52]. The cost of buying and replacing solar cells is $ 3200 and $ 3000 per kW, respectively [53]. Also, the annual operating and maintenance cost of solar cells, which mainly includes cleaning and can be done by the operator itself, are considered zero [54].

The HOMER software calculates the air clearness index (), which is a very important and influential parameter in the performance of solar cells by the following equation [55]:where is the monthly average daily irradiation on a horizontal plane at the Earth’s surface and is the monthly average daily value of extraterrestrial radiation energy falling on a horizontal plane. is given to the software as input, and the software calculates the value of using latitude and by the following equations [55]:where is the extraterrestrial radiation in terms of Mj/m2-day, is the solar constant and equal to 0.082 Mj/m2-min, is the inverse relative distance earth-sun, is the number of day in the year, is the sunset hour angle in terms of radian, is the latitude in terms of radian, and is the declination of the sun in terms of radian.

Economic calculations in the HOMER software include determining the LCOE parameter performed by the following equation [56]:where is the sum of the annual costs and is the cost of the system’s actual electrical load in terms of kWh/year.

3.2. Hydrogen-Based Electricity Production

Water electrolysis requires an external energy carrier to carry out the process of separating oxygen and hydrogen. Among the types of energy carriers, solar energy is one of the main and justifiable forms of energy [57]. To calculate the potential of solar hydrogen production in different stations located in eight climates of Iran (cold, very cold, moderate and rainy, semimoderate and rainy, semiarid, hot and dry, very hot and dry, and very hot and humid), the amount of generated solar power () was first calculated by the HOMER software (equation (1)). Then, using an analytical analysis according to equation (8), the amount of hydrogen produced per year per kilowatt of solar cells used to generate electricity was estimated [58]. Also, due to the high efficiency, conditions in the Iranian market, and the longer average lifetime [59], the type of technology desired for water electrolysis in the present work is PEM.

In the above relation, is the electrolyzer efficiency in terms of percentage, which is considered 75% in the present work, and is the high heating value of hydrogen, which is 39.4 kWh/kg.

3.3. Assessment of the Areas by GIS Map

GIS technology by collecting and combining information from a conventional database provides information for map preparation by illustrating and using geographical analyzes. This information is used to make events clearer, to predict results, and to draw maps [60].

The use of spatial relationships between data in interpolation methods increases the accuracy of estimating radiation potential for different regions. In the present paper, the inverse distance weighting (IDW) internalization method is used. Calculations in IDW depend on two factors: select the power of in formula and the position of the adjacent points, or in other words, the position of the neighboring units. The default value for is considered to be 2, and for this value, the name of the method is the inverse distance squared weighted [61]. As shown in Figure 7, the point weight window includes a list of weights given to each point that are used to predict a value at the target location. In the IDW method, the points closest to the desired location weigh more than the farthest points, and the weight decreases with increasing distance.

4. Results

Table 2 shows the results of the studies. As can be seen, Jask stations with a LCOE of $ 0.172 and Darab with $ 0.286 have the highest and lowest prices per kWh of solar electricity produced, respectively. Bushehr and Deyr stations with 0.178 $ are in the second place of lowest LCOE value, and Anzali station with $ 0.271 is in the second place of largest LCOE value. The average LCOE for the 102 under study stations is $ 0.206.


StationLCOE ($/kWh)Hours of operationCapacity factor (%)PV production (kWh/yr)Hydrogen production (kg/yr)

Abadan0.193438022.4392574.7
Abadeh0.193438522.4392974.8
Ahar0.235438418.4322561.4
Ahwaz0.204438221.2370670.5
Alvand0.225438419.2336864.1
Anzali0.271439015.9279253.1
Aq Qaleh0.242436817.9313359.6
Arak0.205438421.1370370.5
Ardakan0.192439022.5394275.0
Ardistan0.189438522.9400776.3
Babol0.267438716.2284254.1
Babolsar0.266438816.3284754.2
Bafq0.192438922.5393674.9
Baft0.189438922.9400476.2
Bam0.193439122.3391674.5
Bandarabbass0.199439021.8381672.6
Bandar-e Genaveh0.192438322.5394275.0
Bandar-e Lengeh0.191438522.6395875.3
Bandar-e Mahshahr0.200438121.6378172.0
Birjand0.202436721.4374771.3
Bojnurd0.218437519.8346966.0
Borujen0.196438622.1386873.6
Bukan0.200438121.6378572.0
Bushehr0.178438224.4426781.2
Chah Bahar0.199439921.8381272.6
Chalus0.264438716.4286854.6
Darab0.286438715.1264850.4
Dargaz0.234438118.4323161.5
Dehloran0.185438023.3408477.7
Dezful0.189438222.9401976.5
Deyr0.178438124.3425481.0
Do Gonbadan0.199438321.7380472.4
Do Rud0.188438323.0403376.8
Esfahan0.188438423.0402576.6
Firuzabad0.196438522.1386473.6
Garmsar0.212438620.4356667.9
Gonabad0.201437321.5376271.6
Gonbad-e Qabus0.237435318.3319960.9
Gorgan0.232436818.6326162.1
Hamedan0.188438323.0402676.6
Ilam0.206438221.0367670.0
Iranshahr0.193436222.5393474.9
Jahrom0.191438522.7396975.6
Jask0.172438125.1440183.8
Jiroft0.192439122.6395375.2
Kamyaran0.202438421.4374571.3
Kangan0.193438222.4392774.8
Karaj0.207438720.8365269.5
Kashan0.205438621.1369270.3
Kashmar0.208437420.8364369.3
Kazerun0.196438322.0385873.4
Kerman0.196439122.1386773.6
Kermanshah0.217438319.9349566.5
Khalkhal0.267438616.2283854.0
Khash0.195434822.1387773.8
Khomeyn0.199438321.7380272.4
Khormuj0.200438221.6378572.0
Khorramabad0.190438522.8399076.0
Khoy0.219438319.8346265.9
Kuhdasht0.185438223.3408677.8
Langarud0.256438516.9296356.4
Lar0.203438521.3372871.0
Mahabad0.222438119.5342065.1
Maragheh0.213438320.3356567.9
Marand0.211438320.5358468.2
Marivan0.203438121.3373271.0
Mashhad0.219438019.8346666.0
Masjed-e Soleyman0.200438321.6378772.1
Mianeh0.217438519.9349266.5
Minab0.195438822.1387873.8
Naiin0.187438723.1405377.2
Neyriz0.190438722.8399776.1
Neyshabur0.212437720.4357468.0
Orumieh0.208438120.8363769.2
Parsabad0.250438617.3303057.7
Qaen0.199437221.7380072.3
Qom0.203438521.3372470.9
Ramsar0.193438422.4392074.6
Ravar0.191439022.6396375.4
Sabzevar0.208437420.8363869.3
Sanandaj0.209438420.7363069.1
Saravan0.191437222.6395675.3
Sari0.198438621.9383172.9
Semnan0.186438923.2407077.5
Sepidan0.194438422.3390074.2
Shahr-e Babak0.191438722.6396075.4
Shahr-e Kord0.194438422.3389874.2
Shahroud0.187437023.1405077.1
Shiraz0.192438522.5394475.1
Sirjan0.192438822.5393875.0
Tabas0.189438922.8399976.1
Tabriz0.222438419.5341365.0
Takab0.188438423.0403076.7
Taybad0.205438121.0368870.2
Tehran0.209438620.7362068.9
Torbat-e Jam0.215438220.1352567.1
Torbat-Heydarieh0.208437720.8364069.3
Yasuj0.195438422.2389074.0
Yazd0.204438821.2371670.7
Zabol0.198437621.8382572.8
Zahedan0.196436322.0386273.5
Zanjan0.186438723.2407177.5

According to the results of Table 2, the highest and lowest operating hours of solar cells during the year with values of 4399 and 4348 are related to Chabahar and Khash stations, respectively. Also, the average operating hour of solar cells for the under studied stations is 4382. The reason why the maximum and minimum operating hours of solar cells do not correspond to the highest and lowest solar power generation and therefore the highest and lowest LCOE values can be due to factors such as air cloudiness and radiation intensity.

According to the results of Table 2, Jask and Darab stations have the highest and lowest capacity factor with 25.1% and 15.1%, respectively. The capacity factor, which is actually the average output power divided by the nominal capacity of solar cells, is on average 21.21% for all under study stations.

Based on the results, it can be seen that the top 3 stations in the field of solar power generation are Jask, Bushehr, and Deyr stations, which produce 4401, 4267, and 4254 kWh of electricity per year, respectively. Based on the location of renewable power plants in Iran, which are mainly in the central of Iran [62] and given that the top stations generate solar electricity in the southern margins of the country, more attention needs to be paid to Jask, Bushehr, and Deyr stations. The three stations that have produced the least solar electricity are Darab, Anzali, and Khalkhal, which generated 2648, 2792, and 2838 kWh of electricity per year, respectively. The reason for this low production can be climatic factors such as high cloudiness and low radiation intensity. According to the results, the total solar power generated in the 102 stations surveyed will be 380 MWh per year which the average of each station is about 3.7 MWh per year. This result can be very important for decision-makers and policymakers in the field of a distributed generation because so far no comprehensive work has been done to assess the production of solar electricity in Iran.

According to the results, Jask station with an annual production of 83.8 kg of hydrogen was able to obtain the first rank in the production of hydrogen on a home scale. The lowest amount of hydrogen production with 50.4 kg per year is related to Darab station. Other top stations in the field of hydrogen production are Bushehr and Deyr, and other unsuitable stations in the field of hydrogen production are Anzali and Khalkhal. According to statistical calculations, the total amount of hydrogen produced in the under studied stations was 7.2 tons per year, with each station producing an average of 70.8 kg of hydrogen per year. In order to better evaluate and understand finding suitable and unsuitable areas for home-scale hydrogen production in Iran, the hydrogen production map in Iran has been drawn using the GIS software in Figure 8. Based on Figure 8, it is clear that the southern half of Iran, especially the coasts of the Persian Gulf and the Gulf of Oman, is suitable for hydrogen production, and the northern, northeastern, northwestern, and one region in southern of Iran are unsuitable for hydrogen production.

5. Conclusion

Hydrogen can become an important medium for storing RE to become clean electricity if needed. In other words, by using hydrogen, RE can be effectively stored and transferred over long distances and over a long period of time [23]. Therefore, hydrogen is an essential element for becoming 100% RE systems and eliminating the phenomenon of global warming. Since it is very important for decision-makers and policymakers in the field of distributed generation to know the potential of electricity and hydrogen production on a home scale, in the present work, this issue has been studied for the first time in Iran. Technical-economic investigations have been conducted by the HOMER software on the average 20-year radiation data of 102 stations in Iran. Finally, for better understanding, the ArcGIS software provides a home-scale hydrogen production potential map. The main results are as follows:(i)Jask with a LCOE of $ 0.172 and Darab with $ 0.286 have the highest and lowest prices per kWh of solar electricity produced, respectively(ii)The average LCOE for the 102 under study stations is $ 0.206(iii)Jask and Darab stations have the highest and lowest capacity factor with 25.1% and 15.1%, respectively(iv)The average capacity factor is 21.21% for all under study stations(v)Top 3 stations in the field of solar power generation are Jask, Bushehr, and Deyr stations, which produce 4401, 4267, and 4254 kWh of electricity per year, respectively(vi)The three stations that have produced the least solar electricity are Darab, Anzali, and Khalkhal, which generated 2648, 2792, and 2838 kWh of electricity per year, respectively(vii)The total solar power generated in the 102 under study stations is 380 MWh per year(viii)Jask with the production of 83.8 kg/year has the first rank in the production of hydrogen(ix)The lowest amount of hydrogen production with 50.4 kg/year is related to Darab station(x)The total amount of hydrogen produced in the under studied stations was 7.2 tons/year(xi)The southern half of Iran, especially the coasts of the Persian Gulf and the sea of Oman, is suitable for hydrogen production, and the northern, northeastern, northwestern, and one region in southern Iran are unsuitable for hydrogen production

Nomenclature

RE:Renewable energy
PEM:Proton exchange membrane
FC:Fuel cell
PV:Photovoltaic
NPC:Net present cost ($)
LCOE:Levelized cost of energy ($/kWh)
DEA:Data envelopment analysis
GIS:Geographic information system
IDW:inverse distance weighting
:Output power of PV cells (kW)
:Output power of solar cell under standard conditions (kW)
:Derating factor (%)
:Incident radiation on the cell’s surface on a monthly basis (kW/m2)
:Incident radiation on the cell’s surface under standard conditions (1 kW/m2)
:Clearness index (-)
:Sunset hour angle (radian)
:Mass of hydrogen (kg/year)
:Solar constant (0.082 MJ/m2-min)
:Electrolyzer efficiency (%)
:Extraterrestrial radiation (MJ/m2-day)
φ:Latitude (radian)
:Inverse relative distance earth-sun
:Number of the day during the year (-)
:Total annual cost ($)
:Real electrical load by the system (kWh/year)
δ:Declination of the sun (radian)
:Monthly average daily radiation on a horizontal plane (MJ/m2-day)
:Higher heating value of the hydrogen (39.4 kWh/kg).

Data Availability

All data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors would like to thank all the organizations that provided data for this work.

References

  1. UN Department of Economic and Social Affairs, Population Division, World population prospects 2019 highlights, United Nations, New York, 2019, https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf.
  2. K. Alanne and S. Cao, “An overview of the concept and technology of ubiquitous energy,” Applied Energy, vol. 238, pp. 284–302, 2019. View at: Publisher Site | Google Scholar
  3. M. Jahangiri, A. Khosravi, H. A. Raiesi, and A. Mostafaeipour, “Analysis of standalone PV-based hybrid systems for power generation in Rural area,” in International Conference on Fundamental Research in Electrical Engineering, pp. 1–10, Tehran, Iran, 2017, https://www.civilica.com/Paper-ICEEC01-ICEEC01_166.html. View at: Google Scholar
  4. M. Sankir and N. D. Sankir, Eds., Hyrdogen storage technologies, John Wiley & Sons, 2018, ISBN: 978-1-119-45988-0.
  5. A. L. Dicks and D. A. Rand, Fuel cell systems explained, John Wiley & Sons, 2018, ISBN: 9781118613528.
  6. S. Ebrahimi, M. Jahangiri, H. A. Raiesi, and A. R. Ariae, “Optimal planning of on-grid hybrid microgrid for remote island using HOMER software, Kish in Iran,” International Journal of Energetica, vol. 3, no. 2, pp. 13–21, 2019. View at: Publisher Site | Google Scholar
  7. A. Alidadi Shamsabadi, M. Jahangiri, A. Koohi Faegh, and A. Raeisi Dehkordi, “Biogas production in a dairy cow unit to provide a sustainable solution for reducing the environmental pollutions and pathogens,” in 11th international Energy Conference (IEC 2016), pp. 1–9, Tehran, Iran, 2016, https://www.academia.edu/37642439/Biogas_production_in_a_dairy_cow_unit_to_provide_a_sustainable_solution_for_reducing_the_environmental_pollutions_and_pathogens. View at: Google Scholar
  8. S. Vahdatpour, S. Behzadfar, L. Siampour, E. Veisi, and M. Jahangiri, “Evaluation of off-grid hybrid renewable systems in the four climate regions of Iran,” Journal of Renewable Energy and Environment, vol. 4, no. 1, pp. 61–70, 2017. View at: Publisher Site | Google Scholar
  9. O. Nematollahi, P. Alamdari, M. Jahangiri, A. Sedaghat, and A. A. Alemrajabi, “A techno-economical assessment of solar/wind resources and hydrogen production: a case study with GIS maps,” Energy, vol. 175, pp. 914–930, 2019. View at: Publisher Site | Google Scholar
  10. S. Pahlavan, M. Jahangiri, A. Alidadi Shamsabadi, and A. Khechekhouche, “Feasibility study of solar water heaters in Algeria, a review,” Journal of Solar Energy Research, vol. 3, no. 2, pp. 135–146, 2018, https://jser.ut.ac.ir/article_67424.html. View at: Google Scholar
  11. M. Jahangiri, A. Haghani, S. Heidarian, A. Alidadi Shamsabadi, and L. M. Pomares, “Electrification of a tourist village using hybrid renewable energy systems, Sarakhiyeh in Iran,” Journal of Solar Energy Research, vol. 3, no. 3, pp. 201–211, 2018, https://jser.ut.ac.ir/article_68643.html. View at: Google Scholar
  12. A. R. Ariae, M. Jahangiri, M. H. Fakhr, and A. A. Shamsabadi, “Simulation of biogas utilization effect on the economic efficiency and greenhouse gas emission: a case study in Isfahan, Iran,” International Journal of Renewable Energy Development, vol. 8, no. 2, pp. 149–160, 2019. View at: Publisher Site | Google Scholar
  13. D. Parra, L. Valverde, F. J. Pino, and M. K. Patel, “A review on the role, cost and value of hydrogen energy systems for deep decarbonisation,” Renewable and Sustainable Energy Reviews, vol. 101, pp. 279–294, 2019. View at: Publisher Site | Google Scholar
  14. J. O. Abe, A. P. I. Popoola, E. Ajenifuja, and O. M. Popoola, “Hydrogen energy, economy and storage: review and recommendation,” International Journal of Hydrogen Energy, vol. 44, no. 29, pp. 15072–15086, 2019. View at: Publisher Site | Google Scholar
  15. H. Blanco and A. Faaij, “A review at the role of storage in energy systems with a focus on power to gas and long-term storage,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 1049–1086, 2018. View at: Publisher Site | Google Scholar
  16. M. Smitkova, F. Janíček, and J. Riccardi, “Life cycle analysis of processes for hydrogen production,” International Journal of Hydrogen Energy, vol. 36, no. 13, pp. 7844–7851, 2011. View at: Publisher Site | Google Scholar
  17. I. Staffell, D. Scamman, A. V. Abad et al., “The role of hydrogen and fuel cells in the global energy system,” Energy & Environmental Science, vol. 12, no. 2, pp. 463–491, 2019. View at: Publisher Site | Google Scholar
  18. K. Silverstein, How renewable energy will make all the cheap hydrogen we need, June 2020, https://www.forbes.com/sites/kensilverstein/2020/02/06/the-cost-to-produce-and-distribute-hydrogen-from-clean-energy-will-plummet/#384fbefd5897.
  19. A. Valente, D. Iribarren, and J. Dufour, “Harmonising the cumulative energy demand of renewable hydrogen for robust comparative life-cycle studies,” Journal of Cleaner Production, vol. 175, pp. 384–393, 2018. View at: Publisher Site | Google Scholar
  20. Renewable Energy and Energy Efficiency Organization (SATBA), Conserving sources by developing renewable and clean energies, June 2020, http://www.satba.gov.ir/suna_content/media/image/2020/05/8178_orig.png.
  21. M. Wang, G. Wang, Z. Sun, Y. Zhang, and D. Xu, “Review of renewable energy-based hydrogen production processes for sustainable energy innovation,” Global Energy Interconnection, vol. 2, no. 5, pp. 436–443, 2019. View at: Publisher Site | Google Scholar
  22. R. S. El-Emam and H. Özcan, “Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production,” Journal of Cleaner Production, vol. 220, pp. 593–609, 2019. View at: Publisher Site | Google Scholar
  23. C. Acar and I. Dincer, “Review and evaluation of hydrogen production options for better environment,” Journal of Cleaner Production, vol. 218, pp. 835–849, 2019. View at: Publisher Site | Google Scholar
  24. IRENA, Hydrogen from Renewable Power: Technology Outlook for the Energy Transition, International Renewable Energy Agency, Abu Dhabi, 2018, ISBN: 978-92-9260-077-8.
  25. M. Faraj, M. Boccia, H. Miller et al., “New LDPE based anion-exchange membranes for alkaline solid polymeric electrolyte water electrolysis,” International Journal of Hydrogen Energy, vol. 37, no. 20, pp. 14992–15002, 2012. View at: Publisher Site | Google Scholar
  26. Polymer fuel cell, Renewable Energy and Energy Efficiency Organization (SATBA), 2021, April 2021, http://hydrogen.satba.gov.ir/fa/overviewhfc/overviewfuelcell/typesfuelcells/polymer.
  27. A. Karshenas, F. Majidfar, N. Bagherimoghaddam, and K. Mohammadi, “Predicting the role of advanced fuel cell technologies in the sustainable development of Iran,” in 4th Iranian Technology Management Conference, pp. 1–15, Tehran, 2010, https://civilica.com/doc/94721. View at: Google Scholar
  28. Alkaline fuel cell, Renewable Energy and Energy Efficiency Organization (SATBA), 2021, April 2021, http://hydrogen.satba.gov.ir/fa/overviewhfc/overviewfuelcell/typesfuelcells/alkaline.
  29. M. Qadrdan and J. Shayegan, “Economic assessment of hydrogen fueling station, a case study for Iran,” Renewable Energy, vol. 33, no. 12, pp. 2525–2531, 2008. View at: Publisher Site | Google Scholar
  30. A. Shiroudi and S. R. H. Taklimi, “Demonstration project of the solar hydrogen energy system located on Taleghan-Iran: technical-economic assessments,” in World Renewable Energy Congress-Sweden, vol. 57, pp. 1158–1165, Linköping University Electronic Press, Linköping; Sweden, 2011, https://ep.liu.se/ecp/057/vol4/004/ecp57vol4_004.pdf. View at: Google Scholar
  31. A. Shiroudi, S. R. H. Taklimi, S. A. Mousavifar, and P. Taghipour, “Stand-alone PV-hydrogen energy system in Taleghan-Iran using HOMER software: optimization and techno-economic analysis,” Environment, Development and Sustainability, vol. 15, no. 5, pp. 1389–1402, 2013. View at: Publisher Site | Google Scholar
  32. M. Nasiri, R. R. Khorshid-Doust, and N. B. Moghaddam, “The status of the hydrogen and fuel cell innovation system in Iran,” Renewable and Sustainable Energy Reviews, vol. 43, pp. 775–783, 2015. View at: Publisher Site | Google Scholar
  33. A. Mostafaeipour, M. Khayyami, A. Sedaghat et al., “Evaluating the wind energy potential for hydrogen production: a case study,” International Journal of Hydrogen Energy, vol. 41, no. 15, pp. 6200–6210, 2016. View at: Publisher Site | Google Scholar
  34. F. Homayouni, R. Roshandel, and A. A. Hamidi, “Techno-economic and environmental analysis of an integrated standalone hybrid solar hydrogen system to supply CCHP loads of a greenhouse in Iran,” International Journal of Green Energy, vol. 14, no. 3, pp. 295–309, 2017. View at: Publisher Site | Google Scholar
  35. F. Fazelpour, N. Soltani, and M. A. Rosen, “Economic analysis of standalone hybrid energy systems for application in Tehran, Iran,” International Journal of Hydrogen Energy, vol. 41, no. 19, pp. 7732–7743, 2016. View at: Publisher Site | Google Scholar
  36. O. Alavi, A. Mostafaeipour, and M. Qolipour, “Analysis of hydrogen production from wind energy in the southeast of Iran,” International Journal of Hydrogen Energy, vol. 41, no. 34, pp. 15158–15171, 2016. View at: Publisher Site | Google Scholar
  37. M. E. Ramazankhani, A. Mostafaeipour, H. Hosseininasab, and M. B. Fakhrzad, “Feasibility of geothermal power assisted hydrogen production in Iran,” International Journal of Hydrogen Energy, vol. 41, no. 41, pp. 18351–18369, 2016. View at: Publisher Site | Google Scholar
  38. O. Alavi, A. Mostafaeipour, A. Sedaghat, and M. Qolipour, “Feasibility of a wind-hydrogen energy system based on wind characteristics for Chabahar, Iran,” Energy Harvesting and Systems, vol. 4, no. 4, pp. 143–163, 2018. View at: Publisher Site | Google Scholar
  39. M. Qolipour, A. Mostafaeipour, and O. M. Tousi, “Techno-economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production: a case study,” Renewable and Sustainable Energy Reviews, vol. 78, pp. 113–123, 2017. View at: Publisher Site | Google Scholar
  40. A. Mostafaeipour, A. Sedaghat, M. Qolipour et al., “Localization of solar-hydrogen power plants in the province of Kerman, Iran,” Advances in Energy Research, vol. 5, no. 2, p. 179, 2017. View at: Publisher Site | Google Scholar
  41. M. Rezaei, A. Mostafaeipour, M. Qolipour, and H. R. Arabnia, “Hydrogen production using wind energy from sea water: a case study on Southern and Northern coasts of Iran,” Energy & Environment, vol. 29, no. 3, pp. 333–357, 2018. View at: Publisher Site | Google Scholar
  42. Z. N. Ashrafi, M. Ghasemian, M. I. Shahrestani, E. Khodabandeh, and A. Sedaghat, “Evaluation of hydrogen production from harvesting wind energy at high altitudes in Iran by three extrapolating Weibull methods,” International Journal of Hydrogen Energy, vol. 43, no. 6, pp. 3110–3132, 2018. View at: Publisher Site | Google Scholar
  43. M. Rezaei, A. Mostafaeipour, M. Qolipour, and M. Momeni, “Energy supply for water electrolysis systems using wind and solar energy to produce hydrogen: a case study of Iran,” Frontiers in Energy, vol. 13, no. 3, pp. 539–550, 2019. View at: Publisher Site | Google Scholar
  44. A. Mostafaeipour, M. Qolipour, and H. Goudarzi, “Feasibility of using wind turbines for renewable hydrogen production in Firuzkuh, Iran,” Frontiers in Energy, vol. 13, no. 3, pp. 494–505, 2019. View at: Publisher Site | Google Scholar
  45. M. Jahangiri, A. Haghani, A. A. Shamsabadi, A. Mostafaeipour, and L. M. Pomares, “Feasibility study on the provision of electricity and hydrogen for domestic purposes in the south of Iran using grid-connected renewable energy plants,” Energy Strategy Reviews, vol. 23, pp. 23–32, 2019. View at: Publisher Site | Google Scholar
  46. M. Moein, S. Pahlavan, M. Jahangiri, and A. Alidadi Shamsabadi, “Finding the minimum distance from the national electricity grid for the cost-effective use of diesel generator-based hybrid renewable systems in Iran,” Journal of Renewable Energy and Environment, vol. 5, no. 1, pp. 8–22, 2018. View at: Publisher Site | Google Scholar
  47. M. Jahangiri, A. A. Shamsabadi, A. Mostafaeipour, M. Rezaei, Y. Yousefi, and L. M. Pomares, “Using fuzzy MCDM technique to find the best location in Qatar for exploiting wind and solar energy to generate hydrogen and electricity,” International Journal of Hydrogen Energy, vol. 45, no. 27, pp. 13862–13875, 2020. View at: Publisher Site | Google Scholar
  48. M. Jahangiri, A. Haghani, S. Heidarian, A. Mostafaeipour, H. A. Raiesi, and A. A. Shamsabadi, “Sensitivity analysis of using solar cells in regional electricity power supply of off-grid power systems in Iran,” Journal of Engineering, Design and Technology, vol. 18, no. 6, pp. 1849–1866, 2020. View at: Publisher Site | Google Scholar
  49. M. Jahangiri, M. H. Soulouknga, F. K. Bardei et al., “Techno-econo-environmental optimal operation of grid-wind-solar electricity generation with hydrogen storage system for domestic scale, case study in Chad,” International Journal of Hydrogen Energy, vol. 44, no. 54, pp. 28613–28628, 2019. View at: Publisher Site | Google Scholar
  50. R. Kalbasi, M. Jahangiri, A. Nariman, and M. Yari, “Optimal design and parametric assessment of grid-connected solar power plants in Iran, a review,” Journal of Solar Energy Research, vol. 4, no. 2, pp. 142–162, 2019. View at: Publisher Site | Google Scholar
  51. M. Jahangiri, A. Haghani, A. Mostafaeipour, A. Khosravi, and H. A. Raeisi, “Assessment of solar-wind power plants in Afghanistan: a review,” Renewable and Sustainable Energy Reviews, vol. 99, pp. 169–190, 2019. View at: Publisher Site | Google Scholar
  52. J. R. Zaniani, R. H. Dehkordi, A. Bibak, P. Bayat, and M. Jahangiri, “Examining the possibility of using solar energy to provide warm water using RETScreen4 software (case study: Nasr primary school of Pirbalut),” Current World Environment, vol. 10, no. Special-Issue1, pp. 835–841, 2015. View at: Publisher Site | Google Scholar
  53. S. Pahlavan, M. Jahangiri, A. Alidadi Shamsabadi, and A. Rahimi Ariae, “Assessment of PV-based CHP system: the effect of heat recovery factor and fuel type,” Journal of Energy Management and Technology, vol. 3, no. 1, pp. 40–47, 2019. View at: Publisher Site | Google Scholar
  54. A. A. Shamsabadi, M. Jahangiri, F. K. Bardei, and H. A. Raeisi, “Investigation of Sensitivity Analysis in the Generation of Renewable Electricity for a Hybrid System in Iran,” in The 12th international Energy Conference (IEC 2018), pp. 1–15, Tehran, Iran, 2018, https://www.civilica.com/Paper-IEC12-IEC12_278.html. View at: Google Scholar
  55. M. Jahangiri, O. Nematollahi, A. Haghani, H. A. Raiesi, and A. Alidadi Shamsabadi, “An optimization of energy cost of clean hybrid solar-wind power plants in Iran,” International Journal of Green Energy, vol. 16, no. 15, pp. 1422–1435, 2019. View at: Publisher Site | Google Scholar
  56. M. Jahangiri, A. A. Shamsabadi, O. Nematollahi, and A. Mostafaeipour, “Enviro-economic investigation of a new generation of wind turbines,” International Journal of Strategic Energy & Environmental Planning, vol. 2, no. 3, pp. 43–59, 2020, https://www.researchgate.net/publication/341670932_Enviro-economic_Investigation_of_a_New_Generation_of_Wind_Turbines_International_Journal_of_Strategic_Energy_Environmental_Planning_2_3_pp_43-59/stats. View at: Google Scholar
  57. F. I. Gallardo, A. M. Ferrario, M. Lamagna, E. Bocci, D. A. Garcia, and T. E. Baeza-Jeria, “A techno-economic analysis of solar hydrogen production by electrolysis in the north of Chile and the case of exportation from Atacama Desert to Japan,” International Journal of Hydrogen Energy, vol. 46, no. 26, pp. 13709–13728, 2021. View at: Publisher Site | Google Scholar
  58. S. Touili, A. A. Merrouni, Y. El Hassouani, A. I. Amrani, and A. Azouzoute, “A techno-economic comparison of solar hydrogen production between Morocco and Southern Europe,” in 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), pp. 1–6, Fez, Morocco, 2019. View at: Publisher Site | Google Scholar
  59. M. R. Assari, A. A. Taghipour, M. Yousefikia, and M. Sobhaninezhad, “Analysis of Static and Dynamic Model of PEM Fuel Cell,” in National Conference on Introduction to Modern Technologies in the Field of Mechanical Engineering, Shiraz, Iran, 2010, https://civilica.com/doc/109957. View at: Google Scholar
  60. M. Jahangiri, R. Ghaderi, A. Haghani, and O. Nematollahi, “Finding the best locations for establishment of solar-wind power stations in Middle-East using GIS: a review,” Renewable and Sustainable Energy Reviews, vol. 66, pp. 38–52, 2016. View at: Publisher Site | Google Scholar
  61. Help of ArcGIS 10.1 Software, 2020, June 2020, http://resources.arcgis.com/en/help.
  62. Renewable Energy and Energy Efficiency Organization (SATBA), Renewable Power Plants Geographical Map, 2020, June 2020, http://www.satba.gov.ir/suna_content/media/image/2020/03/8144_orig.png.

Copyright © 2021 Rasool Kalbasi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Download other formatsMore
 Order printed copiesOrder
Views127
Downloads166
Citations

Related articles

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.