Table of Contents Author Guidelines Submit a Manuscript
International Journal of Pediatrics
Volume 2010 (2010), Article ID 307063, 9 pages
http://dx.doi.org/10.1155/2010/307063
Clinical Study

A School-Based Exercise Intervention Program Increases Muscle Strength in Prepubertal Boys

1Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences, Lund University, 22100 Lund, Sweden
2Department of Orthopedics, Malmö University Hospital, 205 02 Malmö, Sweden
3Department of Medicine, Western Hospital, The University of Melbourne (RMH/WH), Footscray, Melbourne, Australia

Received 15 January 2010; Revised 15 April 2010; Accepted 26 April 2010

Academic Editor: Neil Armstrong

Copyright © 2010 Susanna Stenevi-Lundgren et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Boreham and C. Riddoch, “The physical activity, fitness and health of children,” Journal of Sports Sciences, vol. 19, no. 12, pp. 915–929, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. T. L. N. Järvinen, H. Sievänen, K. M. Khan, A. Heinonen, and P. Kannus, “Shifting the focus in fracture prevention from osteoporosis to falls,” BMJ, vol. 336, no. 7636, pp. 124–126, 2008. View at Google Scholar · View at Scopus
  3. C. J. Caspersen, K. E. Powell, and G. Christenson, “Physical activity, exercise and physical fitness: definitions and distinctions for health-related research,” Public Health Reports, vol. 100, no. 2, pp. 126–131, 1985. View at Google Scholar · View at Scopus
  4. C. B. Corbin, B. D. Franks, and R. P. Pangrazi, Health Definitions, Research Digest Series 3, President’s Council on Physical Fitness and Sports, Washington, DC, USA, 2000.
  5. W. B. Strong, R. M. Malina, C. J. R. Blimkie et al., “Evidence based physical activity for school-age youth,” Journal of Pediatrics, vol. 146, no. 6, pp. 732–737, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. USDHHS, Physical Activity Guidelines for Americans, Services USDoHaH, Office of Disease Prevention & Health Promotion, 2008, http://odphp.osophs.dhhs.gov.
  7. A. D. Faigenbaum, W. L. Westcott, R. L. Loud, and C. Long, “The effects of different resistance training protocols on muscular strength and endurance development in children,” Pediatrics, vol. 104, no. 1, p. e5, 1999. View at Google Scholar · View at Scopus
  8. J. A. Ramsay, C. J. R. Blimkie, K. Smith, S. Garner, J. D. MacDougall, and D. G. Sale, “Strength training effects in prepubescent boys,” Medicine and Science in Sports and Exercise, vol. 22, no. 5, pp. 605–614, 1990. View at Google Scholar · View at Scopus
  9. A. Weltman, C. Janney, C. B. Rians et al., “The effects of hydraulic resistance strength training in pre-pubertal males,” Medicine and Science in Sports and Exercise, vol. 18, no. 6, pp. 629–638, 1986. View at Google Scholar
  10. M. S. Sothern, M. Loftin, R. M. Suskind, J. N. Udall, and U. Blecker, “The health benefits of physical activity in children and adolescents: implications for chronic disease prevention,” European Journal of Pediatrics, vol. 158, no. 4, pp. 271–274, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. A. D. G. Baxter-Jones, J. C. Eisenmann, R. L. Mirwald, R. A. Faulkner, and D. A. Bailey, “The influence of physical activity on lean mass accrual during adolescence: a longitudinal analysis,” Journal of Applied Physiology, vol. 105, no. 2, pp. 734–741, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. T. S. Ellenbecker, E. P. Roetert, and S. Riewald, “Isokinetic profile of wrist and forearm strength in elite female junior tennis players,” British Journal of Sports Medicine, vol. 40, no. 5, pp. 411–414, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Kanehisa, S. Kuno, S. Katsuta, and T. Fukunaga, “A 2-year follow-up study on muscle size and dynamic strength in teenage tennis players,” Scandinavian Journal of Medicine and Science in Sports, vol. 16, no. 2, pp. 93–101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. F. L. Morris, G. A. Naughton, J. L. Gibbs, J. S. Carlson, and J. D. Wark, “Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass,” Journal of Bone and Mineral Research, vol. 12, no. 9, pp. 1453–1462, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Dencker, O. Thorsson, M. K. Karlsson et al., “Daily physical activity related to body fat in children aged 8–11 years,” Journal of Pediatrics, vol. 149, no. 1, pp. 38–42, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A.-C. Sollerhed and G. Ejlertsson, “Physical benefits of expanded physical education in primary school: findings from a 3-year intervention study in Sweden,” Scandinavian Journal of Medicine and Science in Sports, vol. 18, no. 1, pp. 102–107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Ara, G. Vicente-Rodríguez, J. Jimenez-Ramirez, C. Dorado, J. A. Serrano-Sanchez, and J. A. L. Calbet, “Regular participation in sports is associated with enhanced physical fitness and lower fat mass in prepubertal boys,” International Journal of Obesity, vol. 28, no. 12, pp. 1585–1593, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Ara, G. Vicente-Rodriguez, J. Perez-Gomez et al., “Influence of extracurricular sport activities on body composition and physical fitness in boys: a 3-year longitudinal study,” International Journal of Obesity, vol. 30, no. 7, pp. 1062–1071, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Mero, L. Jaakkola, and P. V. Komi, “Serum hormones and physical performance capacity in young boy athletes during a 1-year training period,” European Journal of Applied Physiology and Occupational Physiology, vol. 60, no. 1, pp. 32–37, 1990. View at Google Scholar · View at Scopus
  20. S. Stenevi-Lundgren, R. M. Daly, C. Lindén, P. Gärdsell, and M. K. Karlsson, “Effects of a daily school based physical activity intervention program on muscle development in prepubertal girls,” European Journal of Applied Physiology, vol. 105, no. 4, pp. 533–541, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Lindén, G. Alwis, H. Ahlborg et al., “Exercise, bone mass and bone size in prepubertal boys: one-year data from the pediatric osteoporosis prevention study,” Scandinavian Journal of Medicine and Science in Sports, vol. 17, no. 4, pp. 340–347, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. O. Valdimarsson, C. Linden, O. Johnell, P. Gardsell, and M. K. Karlsson, “Daily physical education in the school curriculum in prepubertal girls during 1 year is followed by an increase in bone mineral accrual and bone width–data from the prospective controlled Malmö pediatric osteoporosis prevention study,” Calcified Tissue International, vol. 78, no. 2, pp. 65–71, 2006. View at Google Scholar · View at Scopus
  23. H. Kanehisa, S. Ikegawa, N. Tsunoda, and T. Fukunaga, “Strength and cross-sectional areas of reciprocal muscle: groups in the upper arm and thigh during adolescence,” International Journal of Sports Medicine, vol. 16, no. 1, pp. 54–60, 1995. View at Google Scholar · View at Scopus
  24. D. Young, J. L. Hopper, R. J. Macinnis, C. A. Nowson, N. H. Hoang, and J. D. Wark, “Changes in body composition as determinants of longitudinal changes in bone mineral measures in 8 to 26-year-old female twins,” Osteoporosis International, vol. 12, no. 6, pp. 506–515, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. J. R. Zanchetta, H. Plotkin, and M. L. Alverez Filgueira, “Bone mass in children: normative values for the 2–20-year-old population,” Bone, vol. 16, no. 4, pp. 393S–399S, 1995. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Alwis, C. Linden, S. Stenevi-Lundgren et al., “A one-year exercise intervention program in pre-pubertal girls does not influence hip structure,” BMC Musculoskeletal Disorders, vol. 9, article 9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Linden, H. G. Ahlborg, J. Besjakov, P. Gardsell, and M. K. Karlsson, “A school curriculum-based exercise program increases bone mineral accrual and bone size in prepubertal girls: two-year data from the pediatric osteoporosis prevention (POP) study,” Journal of Bone and Mineral Research, vol. 21, no. 6, pp. 829–835, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. R. K. Fuchs, J. J. Bauer, and C. M. Snow, “Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial,” Journal of Bone and Mineral Research, vol. 16, no. 1, pp. 148–156, 2001. View at Google Scholar · View at Scopus
  29. K. J. MacKelvie, K. M. Khan, M. A. Petit, P. A. Janssen, and H. A. McKay, “A school-based exercise intervention elicits substantial bone health benefits: a 2-year randomized controlled trial in girls,” Pediatrics, vol. 112, no. 6, p. e447, 2003. View at Google Scholar · View at Scopus
  30. K. J. MacKelvie, H. A. McKay, K. M. Khan, and P. R. E. Crocker, “A school-based exercise intervention augments bone mineral accrual in early pubertal girls,” Journal of Pediatrics, vol. 139, no. 4, pp. 501–508, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. K. J. MacKelvie, M. A. Petit, K. M. Khan, T. J. Beck, and H. A. McKay, “Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys,” Bone, vol. 34, no. 4, pp. 755–764, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Bass, L. Saxon, S. Luliano-Burns et al., “Limitations of long term exercise interventions aimed at improving bone health in normally active boys,” Journal of Bone and Mineral Research, vol. 18, p. M151, 2003. View at Google Scholar
  33. H. Düppe, P. Gärdsell, O. Johnell, B. E. Nilsson, and K. Ringsberg, “Bone mineral density, muscle strength and physical activity: a population-based study of 332 subjects aged 15–42 years,” Acta Orthopaedica Scandinavica, vol. 68, no. 2, pp. 97–103, 1997. View at Google Scholar · View at Scopus
  34. J. M. Tanner and R. H. Whitehouse, “Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty,” Archives of Disease in Childhood, vol. 51, no. 3, pp. 170–179, 1976. View at Google Scholar · View at Scopus
  35. M. A. Jones and G. Stratton, “Muscle function assessment in children,” Acta Paediatrica, vol. 89, no. 7, pp. 753–761, 2000. View at Google Scholar · View at Scopus
  36. M. B. A. De Ste Croix, N. Armstrong, and J. R. Welsman, “Concentric isokinetic leg strength in pre-teen, teenage and adult males and females,” Biology of Sport, vol. 16, no. 2, pp. 75–86, 1999. View at Google Scholar · View at Scopus
  37. R. M. Malina, C. Bouchard, and O. Bar-Or, Growth, Maturation and Physical Activity, Human Kinetics, Champaign, Ill, USA, 2004.
  38. C. J. Hernandez, G. S. Beaupré, and D. R. Carter, “A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis,” Osteoporosis International, vol. 14, no. 10, pp. 843–847, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Kuh, R. Hardy, S. Butterworth et al., “Developmental origins of midlife grip strength: findings from a birth cohort study,” Journals of Gerontology, Series A, vol. 61, no. 7, pp. 702–706, 2006. View at Google Scholar · View at Scopus
  40. M. Bradney, G. Pearce, G. Naughton et al., “Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study,” Journal of Bone and Mineral Research, vol. 13, no. 12, pp. 1814–1821, 1998. View at Google Scholar · View at Scopus
  41. T. S. Macfarlane, C. A. Larson, and C. Stiller, “Lower extremity muscle strength in 6- to 8-year-old children using hand-held dynamometry,” Pediatric Physical Therapy, vol. 20, no. 2, pp. 128–136, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Grund, B. Dilba, K. Forberger et al., “Relationships between physical activity, physical fitness, muscle strength and nutritional state in 5- to 11-year-old children,” European Journal of Applied Physiology, vol. 82, no. 5-6, pp. 425–438, 2000. View at Google Scholar · View at Scopus
  43. J. Sunnegardh, L.-E. Bratteby, L.-O. Nordesjo, and B. Nordgren, “Isometric and isokinetic muscle strength, anthropometry and physical activity in 8 and 13 year old Swedish children,” European Journal of Applied Physiology and Occupational Physiology, vol. 58, no. 3, pp. 291–297, 1988. View at Google Scholar · View at Scopus
  44. C. J. R. Blimkie, “Resistance training during preadolescence: issues and controversies,” Sports Medicine, vol. 15, no. 6, pp. 389–407, 1993. View at Google Scholar · View at Scopus
  45. J. C. Ozmun, A. E. Mikesky, and P. R. Surburg, “Neuromuscular adaptations following prepubescent strength training,” Medicine and Science in Sports and Exercise, vol. 26, no. 4, pp. 510–514, 1994. View at Google Scholar · View at Scopus
  46. R. M. Daly, S. Stenevi-Lundgren, C. Linden, and M. K. Karlsson, “Muscle determinants of bone mass, geometry and strength in prepubertal girls,” Medicine and Science in Sports and Exercise, vol. 40, no. 6, pp. 1135–1141, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. A. B. Sopher, J. C. Thornton, J. Wang, R. N. Pierson Jr., S. B. Heymsfield, and M. Horlick, “Measurement of percentage of body fat in 411 children and adolescents: a comparison of dual-energy X-ray absorptiometry with a four-compartment model,” Pediatrics, vol. 113, no. 5, pp. 1285–1290, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. W. W. Wong, A. C. Hergenroeder, J. E. Stuff, N. F. Butte, E. O. Smith, and K. J. Ellis, “Evaluating body fat in girls and female adolescents: advantages and disadvantages of dual-energy X-ray absorptiometry,” American Journal of Clinical Nutrition, vol. 76, no. 2, pp. 384–389, 2002. View at Google Scholar · View at Scopus
  49. T. G. Lohman, “Six-year longitudinal analysis shows physical activity impacts on lean mass development in adolescence,” Journal of Applied Physiology, vol. 105, no. 2, p. 403, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Ingle, M. Sleap, and K. Tolfrey, “The effect of a complex training and detraining programme on selected strength and power variables in early pubertal boys,” Journal of Sports Sciences, vol. 24, no. 9, pp. 987–997, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. W. A. Lillegard, E. W. Brown, D. J. Wilson, R. Henderson, and E. Lewis, “Efficacy of strength training in prepubescent to early postpubescent males and females: effects of gender and maturity,” Pediatric Rehabilitation, vol. 1, no. 3, pp. 147–157, 1997. View at Google Scholar · View at Scopus
  52. G. D. Myer, K. R. Ford, J. P. Palumbo, and T. E. Hewett, “Neuromuscular training improves performance and lower-extremity biomechanics in female athletes,” Journal of Strength and Conditioning Research, vol. 19, no. 1, pp. 51–60, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. M. S. Treuth, G. R. Hunter, R. Figueroa-Colon, and M. I. Goran, “Effects of strength training on intraabdominal adipose tissue in obese prepubertal girls,” Medicine and Science in Sports and Exercise, vol. 30, no. 12, pp. 1738–1743, 1998. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. X. Liu, K. A. Wikland, and J. Karlberg, “New reference for the age at childhood onset of growth and secular trend in the timing of puberty in Swedish,” Acta Paediatrica, vol. 89, no. 6, pp. 637–643, 2000. View at Google Scholar · View at Scopus
  55. J. M. Round, D. A. Jones, J. W. Honour, and A. M. Nevill, “Hormonal factors in the development of differences in strength between boys and girls during adolescence: a longitudinal study,” Annals of Human Biology, vol. 26, no. 1, pp. 49–62, 1999. View at Google Scholar · View at Scopus
  56. J. Wang, J. C. Thornton, M. Horlick et al., “Dual X-ray absorptiometry in pediatric studies: changing scan modes alters bone and body composition measurements,” Journal of Clinical Densitometry, vol. 2, no. 2, pp. 135–141, 1999. View at Publisher · View at Google Scholar · View at Scopus