Table of Contents Author Guidelines Submit a Manuscript
International Journal of Pediatrics
Volume 2010, Article ID 791291, 8 pages
http://dx.doi.org/10.1155/2010/791291
Review Article

What Limits Cardiac Performance during Exercise in Normal Subjects and in Healthy Fontan Patients?

1University Hospital, Catholic University of Leuven, 3000 Leuven, Belgium
2St Vincent's Hospital, University of Melbourne, 3065 Fitzroy, Australia

Received 16 February 2010; Revised 11 May 2010; Accepted 27 July 2010

Academic Editor: Patricia A. Nixon

Copyright © 2010 André La Gerche and Marc Gewillig. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. La Gerche and D. L. Prior, “Exercise: is it possible to have too much of a good thing?” Heart Lung and Circulation, vol. 16, supplement 3, pp. S102–S104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Gewillig, “The fontan circulation,” Heart, vol. 91, no. 6, pp. 839–846, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Rowland, “Echocardiography and circulatory response to progressive endurance exercise,” Sports Medicine, vol. 38, no. 7, pp. 541–551, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. André La Gerche, Andrew I. Macisaac, Andrew T. Burns et al., “Pulmonary transit of agitated contrast is associated with enhanced pulmonary vascular reserve and right ventricular function during exercise,” Journal of Applied Physiology. In press.
  5. V. Stanek, P. Jebavy, J. Hurych, and J. Widimsky, “Central haemodynamics during supine exercise and pulmonary artery occlusion in normal subjects,” Bulletin de Physio-Pathologie Respiratoire, vol. 9, no. 5, pp. 1203–1217, 1973. View at Google Scholar
  6. V. Stanek, J. Widimsky, S. Degre, and H. Denolin, “The lesser circulation during exercise in healthy subjects,” Prog Respir Res, vol. 9, pp. 295–315, 1975. View at Google Scholar · View at Scopus
  7. A. Giardini, A. Balducci, S. Specchia, G. Gargiulo, M. Bonvicini, and F. M. Picchio, “Effect of sildenafil on haemodynamic response to exercise and exercise capacity in fontan patients,” European Heart Journal, vol. 29, no. 13, pp. 1681–1687, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Saltin, “Hemodynamic adaptations to exercise,” American Journal of Cardiology, vol. 55, no. 10, pp. 42D–47D, 1985. View at Google Scholar · View at Scopus
  9. D. R. Bassett Jr. and E. T. Howley, “Limiting factors for maximum oxygen uptake and determinants of endurance performance,” Medicine and Science in Sports and Exercise, vol. 32, no. 1, pp. 70–84, 2000. View at Google Scholar · View at Scopus
  10. A. La Gerche, A. J. Taylor, and D. L. Prior, “Athlete's heart: the potential for multimodality imaging to address the critical remaining questions,” JACC: Cardiovascular Imaging, vol. 2, no. 3, pp. 350–363, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. L. A. Wolfe, D. A. Cunningham, G. M. Davis, and H. Rosenfeld, “Relationship between maximal oxygen uptake and left ventricular function in exercise,” Journal of Applied Physiology, vol. 44, no. 1, pp. 44–49, 1978. View at Google Scholar · View at Scopus
  12. T. W. Rowland, M. Garrard, S. Marwood, M. E. Guerra, D. Roche, and V. B. Unnithan, “Myocardial performance during progressive exercise in athletic adolescent males,” Medicine and Science in Sports and Exercise, vol. 41, no. 9, pp. 1721–1728, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. D. E. R. Warburton, M. J. Haykowsky, H. A. Quinney, D. Blackmore, K. K. Teo, and D. P. Humen, “Myocardial response to incremental exercise in endurance-trained athletes: influence of heart rate, contractility and the Frank-Starling effect,” Experimental Physiology, vol. 87, no. 5, pp. 613–622, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. D. E. R. Warburton, N. Gledhill, V. K. Jamnik, B. Krip, and N. Card, “Induced hypervolemia, cardiac function, VO2max, and performance of elite cyclists,” Medicine and Science in Sports and Exercise, vol. 31, no. 6, pp. 800–808, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. T. R. Kimball, W. A. Mays, P. R. Khoury, R. Mallie, and R. P. Claytor, “Echocardiographic determination of left ventricular preload, afterload, and contractility during and after exercise,” Journal of Pediatrics, vol. 122, no. 6, pp. S89–S94, 1993. View at Google Scholar · View at Scopus
  16. S. Nottin, A. Vinet, F. Stecken et al., “Central and peripheral cardiovascular adaptations during a maximal cycle exercise in boys and men,” Medicine and Science in Sports and Exercise, vol. 34, no. 3, pp. 456–463, 2002. View at Google Scholar · View at Scopus
  17. T. Rowland, A. Garrison, and A. Delulio, “Circulatory responses to progressive exercise: insights from positional differences,” International Journal of Sports Medicine, vol. 24, no. 7, pp. 512–517, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Sagiv, D. Ben-Sira, E. Goldhammer, and M. Soudry, “Left ventricular contractility and function at peak aerobic and anaerobic exercises,” Medicine and Science in Sports and Exercise, vol. 32, no. 7, pp. 1197–1201, 2000. View at Google Scholar · View at Scopus
  19. C. A. Vella and R. A. Robergs, “A review of the stroke volume response to upright exercise in healthy subjects,” British Journal of Sports Medicine, vol. 39, no. 4, pp. 190–195, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Holverda, C. T.-J. Gan, J. T. Marcus, P. E. Postmus, A. Boonstra, and A. Vonk-Noordegraaf, “Impaired stroke volume response to exercise in pulmonary arterial hypertension,” Journal of the American College of Cardiology, vol. 47, no. 8, pp. 1732–1733, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Holverda, H. Rietema, N. Westerhof et al., “Stroke volume increase to exercise in chronic obstructive pulmonary disease is limited by increased pulmonary artery pressure,” Heart, vol. 95, no. 2, pp. 137–141, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. G.-J. Mauritz, J. T. Marcus, A. Boonstra, P. E. Postmus, N. Westerhof, and A. Vonk-Noordegraaf, “Non-invasive stroke volume assessment in patients with pulmonary arterial hypertension: left-sided data mandatory,” Journal of Cardiovascular Magnetic Resonance, vol. 10, no. 1, article 51, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Morrison, S. Sorensen, J. Caldwell et al., “The normal right ventricular response to supine exercise,” Chest, vol. 82, no. 6, pp. 686–691, 1982. View at Google Scholar · View at Scopus
  24. A. R. Hsu, K. E. Barnholt, N. K. Grundmann, J. H. Lin, S. W. McCallum, and A. L. Friedlander, “Sildenafil improves cardiac output and exercise performance during acute hypoxia, but not normoxia,” Journal of Applied Physiology, vol. 100, no. 6, pp. 2031–2040, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. H. A. Ghofrani, F. Reichenberger, M. G. Kohstall et al., “Sildenafil increased exercise capacity during hypoxia at low altitudes and at Mount Everest base camp: a randomized, double-blind, placebo-controlled crossover trial,” Annals of Internal Medicine, vol. 141, no. 3, pp. 169–177, 2004. View at Google Scholar · View at Scopus
  26. V. Faoro, S. Boldingh, M. Moreels et al., “Bosentan decreases pulmonary vascular resistance and improves exercise capacity in acute hypoxia,” Chest, vol. 135, no. 5, pp. 1215–1222, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. A. W. Sheel, M. R. Edwards, G. S. Hunte, and D. C. McKenzie, “Influence of inhaled nitric oxide on gas exchange during normoxic and hypoxic exercise in highly trained cyclists,” Journal of Applied Physiology, vol. 90, no. 3, pp. 926–932, 2001. View at Google Scholar · View at Scopus
  28. S. Puwanant, M. Park, Z. B. Popović et al., “Ventricular geometry, strain, and rotational mechanics in pulmonary hypertension,” Circulation, vol. 121, no. 2, pp. 259–266, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Hart, R. Shave, N. Middleton, K. George, G. Whyte, and D. Oxborough, “Effect of preload augmentation on pulsed wave and tissue Doppler echocardiographic indices of diastolic function after a marathon,” Journal of the American Society of Echocardiography, vol. 20, no. 12, pp. 1393–1399, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. R. G. Barr, D. A. Bluemke, F. S. Ahmed et al., “Percent emphysema, airflow obstruction, and impaired left ventricular filling,” New England Journal of Medicine, vol. 362, no. 3, pp. 217–227, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. J. M. Norton, “Toward consistent definitions for preload and afterload,” Advances in Physiology Education, vol. 25, no. 1–4, pp. 53–61, 2001. View at Google Scholar · View at Scopus
  32. T. W. Rowland, “Circulatory responses to exercise: are we misreading fick?” Chest, vol. 127, no. 3, pp. 1023–1030, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. S. E. Epstein, G. D. Beiser, M. Stampfer, B. F. Robinson, and E. Braunwald, “Characterization of the circulatory response to maximal upright exercise in normal subjects and patients with heart disease,” Circulation, vol. 35, no. 6, pp. 1049–1062, 1967. View at Google Scholar · View at Scopus
  34. J. A. L. Calbet and M. J. Joyner, “Disparity in regional and systemic circulatory capacities: do they affect the regulation of the circulation?” Acta Physiologica, vol. 199, no. 4, pp. 393–406, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. J. J. Tolle, A. B. Waxman, T. L. Van Horn, P. P. Pappagianopoulos, and D. M. Systrom, “Exercise-induced pulmonary arterial hypertension,” Circulation, vol. 118, no. 21, pp. 2183–2189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. S. M. Proudman, W. M. Stevens, J. Sahhar, and D. Celermajer, “Pulmonary arterial hypertension in systemic sclerosis: the need for early detection and treatment,” Internal Medicine Journal, vol. 37, no. 7, pp. 485–494, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Argiento, N. Chesler, M. Mulè et al., “Exercise stress echocardiography for the study of the pulmonary circulation,” European Respiratory Journal, vol. 35, no. 6, pp. 1273–1278, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Bossone, M. Rubenfire, D. S. Bach, M. Ricciardi, and W. F. Armstrong, “Range of tricuspid regurgitation velocity at rest and during exercise in normal adult men: implications for the diagnosis of pulmonary hypertension,” Journal of the American College of Cardiology, vol. 33, no. 6, pp. 1662–1666, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. C. M. Bidart, A. E. Abbas, J. M. Parish, H. P. Chaliki, C. A. Moreno, and S. J. Lester, “The noninvasive evaluation of exercise-induced changes in pulmonary artery pressure and pulmonary vascular resistance,” Journal of the American Society of Echocardiography, vol. 20, no. 3, pp. 270–275, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. M. K. Stickland, R. C. Welsh, M. J. Haykowsky et al., “Effect of acute increases in pulmonary vascular pressures on exercise pulmonary gas exchange,” Journal of Applied Physiology, vol. 100, no. 6, pp. 1910–1917, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. J. T. Reeves, B. M. Groves, A. Cymerman et al., “Operation Everest II: cardiac filling pressures during cycle exercise at sea level,” Respiration Physiology, vol. 80, no. 2-3, pp. 147–154, 1990. View at Publisher · View at Google Scholar · View at Scopus
  42. G. Kovacs, A. Berghold, S. Scheidl, and H. Olschewski, “Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review,” European Respiratory Journal, vol. 34, no. 4, pp. 888–894, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. C. A. Dawson, “Role of pulmonary vasomotion in physiology of the lung,” Physiological Reviews, vol. 64, no. 2, pp. 544–616, 1984. View at Google Scholar · View at Scopus
  44. D. Burkhoff, I. Mirsky, and H. Suga, “Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers,” American Journal of Physiology, vol. 289, no. 2, pp. H501–H512, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. E. V. Buechel, T. Kaiser, C. Jackson, A. Schmitz, and C. J. Kellenberger, “Normal right- and left ventricular volumes and myocardial mass in children measured by steady state free precession cardiovascular magnetic resonance,” Journal of Cardiovascular Magnetic Resonance, vol. 11, no. 1, p. 19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. M. J. Faber, M. Dalinghaus, I. M. Lankhuizen et al., “Right and left ventricular function after chronic pulmonary artery banding in rats assessed with biventricular pressure-volume loops,” American Journal of Physiology, vol. 291, no. 4, pp. H1580–H1586, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Brimioulle, P. Wauthy, P. Ewalenko et al., “Single-beat estimation of right ventricular end-systolic pressure-volume relationship,” American Journal of Physiology, vol. 284, no. 5, pp. H1625–H1630, 2003. View at Google Scholar · View at Scopus
  48. W. MacNee, “Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 150, no. 3, pp. 833–852, 1994. View at Google Scholar · View at Scopus
  49. A. La Gerche, K. A. Connelly, D. J. Mooney, A. I. MacIsaac, and D. L. Prior, “Biochemical and functional abnormalities of left and right ventricular function after ultra-endurance exercise,” Heart, vol. 94, no. 7, pp. 860–866, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. P. S. Douglas, M. L. O'Toole, W. D. B. Hiller, and N. Reichek, “Different effects of prolonged exercise on the right and left ventricles,” Journal of the American College of Cardiology, vol. 15, no. 1, pp. 64–69, 1990. View at Google Scholar · View at Scopus
  51. A. J. Camm and L. Fei, “Chronotropic incompetence—part I: normal regulation of the heart rate,” Clinical Cardiology, vol. 19, no. 5, pp. 424–428, 1996. View at Google Scholar · View at Scopus
  52. H. Ohuchi, “Cardiopulmonary response to exercise in patients with the fontan circulation,” Cardiology in the Young, vol. 15, supplement 3, pp. 39–44, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. E. S. Larsson, B. O. Eriksson, and R. Sixt, “Decreased lung function and exercise capacity in fontan patients. A long-term follow-up,” Scandinavian Cardiovascular Journal, vol. 37, no. 1, pp. 58–63, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Gewillig, S. C. Brown, B. Eyskens et al., “The fontan circulation: who controls cardiac output?” Interactive Cardiovascular and Thoracic Surgery, vol. 10, no. 3, pp. 428–433, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. H. Senzaki, S. Masutani, H. Ishido et al., “Cardiac rest and reserve function in patients with fontan circulation,” Journal of the American College of Cardiology, vol. 47, no. 12, pp. 2528–2535, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Senzaki, S. Masutani, J. Kobayashi et al., “Ventricular afterload and ventricular work in fontan circulation: comparison with normal two-ventricle circulation and single-ventricle circulation with blalock-taussig shunts,” Circulation, vol. 105, no. 24, pp. 2885–2892, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. D. Robbers-Visser, D. Jan ten Harkel, L. Kapusta et al., “Usefulness of cardiac magnetic resonance imaging combined with low-dose dobutamine stress to detect an abnormal ventricular stress response in children and young adults after fontan operation at young age,” American Journal of Cardiology, vol. 101, no. 11, pp. 1657–1662, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. D. De Wolf, B. Suys, H. Verhaaren, D. Matthys, and Y. Taeymans, “Low-dose dobutamine stress echocardiography in children and young adults,” American Journal of Cardiology, vol. 81, no. 7, pp. 895–901, 1998. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Oosterhof, I. I. Tulevski, A. A. W. Roest et al., “Disparity between dobutamine stress and physical exercise magnetic resonance imaging in patients with an intra-atrial correction for transposition of the great arteries,” Journal of Cardiovascular Magnetic Resonance, vol. 7, no. 2, pp. 383–389, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. B. H. Goldstein, C. E. Connor, L. Gooding, and A. P. Rocchini, “Relation of systemic venous return, pulmonary vascular resistance, and diastolic dysfunction to exercise capacity in patients with single ventricle receiving fontan palliation,” American Journal of Cardiology, vol. 105, no. 8, pp. 1169–1175, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. M. I. Burgess, C. Jenkins, J. E. Sharman, and T. H. Marwick, “Diastolic stress echocardiography: Hemodynamic validation and clinical significance of estimation of ventricular filling pressure with exercise,” Journal of the American College of Cardiology, vol. 47, no. 9, pp. 1891–1900, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. D. R. Talreja, R. A. Nishimura, and J. K. Oh, “Estimation of left ventricular filling pressure with exercise by Doppler echocardiography in patients with normal systolic function: a simultaneous echocardiographic-cardiac catheterization study,” Journal of the American Society of Echocardiography, vol. 20, no. 5, pp. 477–479, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Ohuchi, H. Takasugi, H. Ohashi et al., “Abnormalities of neurohormonal and cardiac autonomic nervous activities relate poorly to functional status in fontan patients,” Circulation, vol. 110, no. 17, pp. 2601–2608, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Akagi, L. N. Benson, M. Green et al., “Ventricular performance before and after fontan repair for univentricular atrioventricular connection: angiographic and radionuclide assessment,” Journal of the American College of Cardiology, vol. 20, no. 4, pp. 920–926, 1992. View at Google Scholar · View at Scopus
  65. A. A. Kouatli, J. A. Garcia, T. M. Zellers, E. M. Weinstein, and L. Mahony, “Enalapril does not enhance exercise capacity in patients after fontan procedure,” Circulation, vol. 96, no. 5, pp. 1507–1512, 1997. View at Google Scholar · View at Scopus
  66. G. Barber, T. Di Sessa, J. S. Child et al., “Hemodynamic responses to isolated increments in heart rate by atrial pacing after a fontan procedure,” American Heart Journal, vol. 115, no. 4, pp. 837–841, 1988. View at Google Scholar · View at Scopus
  67. M. H. Gewillig, U. R. Lundstrom, C. Bull, R. K. H. Wyse, and J. E. Deanfield, “Exercise responses in patients with congenital heart disease after fontan repair: patterns and determinants of performance,” Journal of the American College of Cardiology, vol. 15, no. 6, pp. 1424–1432, 1990. View at Google Scholar · View at Scopus
  68. T. Takken, M. H. P. Tacken, A. C. Blank, E. H. Hulzebos, J. L. M. Strengers, and P. J. M. Helders, “Exercise limitation in patients with fontan circulation: a review,” Journal of Cardiovascular Medicine, vol. 8, no. 10, pp. 775–781, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. T. M. Zellers, D. J. Driscoll, C. D. Mottram, F. J. Puga, H. V. Schaff, and G. K. Danielson, “Exercise tolerance and cardiorespiratory response to exercise before and after the fontan operation,” Mayo Clinic Proceedings, vol. 64, no. 12, pp. 1489–1497, 1989. View at Google Scholar · View at Scopus
  70. R. G. S. Cortes, G. Satomi, M. Yoshigi, and K. Momma, “Maximal hemodynamic response after the fontan procedure: doppler evaluation during the treadmill test,” Pediatric Cardiology, vol. 15, no. 4, pp. 170–177, 1994. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Zajc, L. Tomkiewicz, P. Podolec, W. Tracz, and E. Malec, “Cardiorespiratory response to exercise in children after modified fontan operation,” Scandinavian Cardiovascular Journal, vol. 36, no. 2, pp. 80–85, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Gewillig, R. K. Wyse, M. R. De Leval, and J. E. Deanfield, “Early and late arrhythmias after the fontan operation: predisposing factors and clinical consequences,” British Heart Journal, vol. 67, no. 1, pp. 72–79, 1992. View at Google Scholar · View at Scopus
  73. M. I. Cohen, L. A. Rhodes, G. Wernovsky, J. W. Gaynor, T. L. Spray, and J. Rychik, “Atrial pacing: an alternative treatment for protein-losing enteropathy after the fontan operation,” Journal of Thoracic and Cardiovascular Surgery, vol. 121, no. 3, pp. 582–583, 2001. View at Publisher · View at Google Scholar · View at Scopus