Table of Contents Author Guidelines Submit a Manuscript
International Journal of Pediatrics
Volume 2010 (2010), Article ID 835984, 10 pages
Clinical Study

Effects of Juvenile Idiopathic Arthritis on Kinematics and Kinetics of the Lower Extremities Call for Consequences in Physical Activities Recommendations

1Department of Motion Analysis, German Center for Pediatric and Adolescent Rheumatology, 82467 Garmisch-Partenkirchen, Germany
2Department of Biomechanics in Sports, Faculty of Sports and Health, Technische Universität München, 80809 Munich, Germany

Received 18 January 2010; Revised 31 May 2010; Accepted 9 July 2010

Academic Editor: Patricia A. Nixon

Copyright © 2010 M. Hartmann et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Juvenile idiopathic arthritis (JIA) patients () with symmetrical polyarticular joint involvement of the lower extremities and healthy controls () were compared concerning differences in kinematic, kinetic, and spatio-temporal parameters with 3D gait analysis. The aims of this study were to quantify the differences in gait between JIA patients and healthy controls and to provide data for more detailed sport activities recommendations. JIA-patients showed reduced walking speed and step length, strongly anterior tilted pelvis, reduced maximum hip extension, reduced knee extension during single support phase and reduced plantar flexion in push off. Additionally the roll-off procedure of the foot was slightly decelerated. The reduced push off motion in the ankle was confirmed by lower peaks in ankle moment and power. The gait of JIA-patients can be explained as a crouch-like gait with hyperflexion in hip and knee joints and less plantar flexion in the ankle. A preventive mobility workout would be recommendable to reduce these restrictions in the future. Advisable are sports with emphasis on extension in hip, knee, and ankle plantar flexion.