Table of Contents Author Guidelines Submit a Manuscript
International Journal of Pediatrics
Volume 2012, Article ID 504387, 11 pages
http://dx.doi.org/10.1155/2012/504387
Research Article

Evaluation of Functional Electrical Stimulation to Assist Cycling in Four Adolescents with Spastic Cerebral Palsy

1Interdisciplinary Program in Biomechanics and Movement Science, University of Delaware, Newark, DE 19716, USA
2Biomechanics Division, ARCCA Inc., Penns Park, PA 18943, USA
3Department of Physical Therapy, University of Delaware, Newark, 301 McKinly Laboratory, DE 19716, USA
4Research Department, Shriners Hospital for Children, Philadelphia, PA 19140, USA

Received 2 November 2011; Revised 12 January 2012; Accepted 13 February 2012

Academic Editor: Maria A. Fragala-Pinkham

Copyright © 2012 Ann Tokay Harrington et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Bax, M. Goldstein, P. Rosenbaun et al., “Proposed definition and classification of cerebral palsy, April 2005,” Developmental Medicine and Child Neurology, vol. 47, no. 8, pp. 571–576, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. D. W. Davis, “Review of cerebral palsy, Part I: description, incidence, and etiology,” Neonatal Network, vol. 16, no. 3, pp. 7–12, 1997. View at Google Scholar · View at Scopus
  3. D. L. Damiano, T. L. Martellotta, J. M. Quinlivan, and M. F. Abel, “Deficits in eccentric versus concentric torque in children with spastic cerebral palsy,” Medicine and Science in Sports and Exercise, vol. 33, no. 1, pp. 117–122, 2001. View at Google Scholar · View at Scopus
  4. M. E. Wiley and D. L. Damiano, “Lower-extremity strength profiles in spastic cerebral palsy,” Developmental Medicine and Child Neurology, vol. 40, no. 2, pp. 100–107, 1998. View at Google Scholar · View at Scopus
  5. S. K. Stackhouse, S. A. Binder-Macleod, and S. C. K. Lee, “Voluntary muscle activation, contractile properties, and fatigability in children with and without cerebral palsy,” Muscle and Nerve, vol. 31, no. 5, pp. 594–601, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. L. T. Taft, “Cerebral palsy,” Pediatric Reviews, vol. 16, no. 11, pp. 411–418, 1995. View at Google Scholar · View at Scopus
  7. J. R. Engsberg, S. A. Ross, K. S. Olree, and T. S. Park, “Ankle spasticity and strength in children with spastic diplegic cerebral palsy,” Developmental Medicine and Child Neurology, vol. 42, no. 1, pp. 42–47, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. S. A. Ross and J. R. Engsberg, “Relation between spasticity and strength in individuals with spastic diplegic cerebral palsy,” Developmental Medicine and Child Neurology, vol. 44, no. 3, pp. 148–157, 2002. View at Google Scholar · View at Scopus
  9. M. M. Hoffer, “Current concepts review. Management of the hip in cerebral palsy,” Journal of Bone and Joint Surgery A, vol. 68, no. 4, pp. 629–631, 1986. View at Google Scholar · View at Scopus
  10. C. J. Lin, L. Y. Guo, F. C. Su, Y. L. Chou, and R. J. Cherng, “Common abnormal kinetic patterns of the knee in gait in spastic diplegia of cerebral palsy,” Gait and Posture, vol. 11, no. 3, pp. 224–232, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. A. L. Hof, “Changes in muscles and tendons due to neural motor disorders: implications for therapeutic intervention,” Neural Plasticity, vol. 8, no. 1-2, pp. 71–81, 2001. View at Google Scholar · View at Scopus
  12. J. H. Rimmer, “Physical fitness levels of persons with cerebral palsy,” Developmental Medicine and Child Neurology, vol. 43, no. 3, pp. 208–212, 2001. View at Google Scholar · View at Scopus
  13. M. N. Orlin, R. J. Palisano, L. A. Chiarello et al., “Participation in home, extracurricular, and community activities among children and young people with cerebral palsy,” Developmental Medicine and Child Neurology, vol. 52, no. 2, pp. 160–166, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. K. J. Bell, S. Õunpuu, P. A. DeLuca, and M. J. Romness, “Natural progression of gait in children with cerebral palsy,” Journal of Pediatric Orthopaedics, vol. 22, no. 5, pp. 677–682, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. L. A. Koman, B. P. Smith, and J. S. Shilt, “Cerebral palsy,” The Lancet, vol. 363, no. 9421, pp. 1619–1631, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. J. H. Rimmer, B. Riley, E. Wang, A. Rauworth, and J. Jurkowski, “Physical activity participation among persons with disabilities: barriers and facilitators,” American Journal of Preventive Medicine, vol. 26, no. 5, pp. 419–425, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. J. H. Rimmer, B. Riley, E. Wang, and A. Rauworth, “Accessibility of health clubs for people with mobility disabilities and visual impairments,” American Journal of Public Health, vol. 95, no. 11, pp. 2022–2028, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. J. H. Rimmer, “The conspicuous absence of people with disabilities in public fitness and recreation facilities: lack of interest or lack of access?” American Journal of Health Promotion, vol. 19, no. 5, pp. 327–329, 2005. View at Google Scholar · View at Scopus
  19. J. H. Rimmer, “Exercise and physical activity in persons aging with a physical disability,” Physical Medicine and Rehabilitation Clinics of North America, vol. 16, no. 1, pp. 41–56, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. T. E. Johnston, A. E. Barr, and S. C. K. Lee, “Biomechanics of submaximal recumbent cycling in adolescents with and without cerebral palsy,” Physical Therapy, vol. 87, no. 5, pp. 572–585, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. T. E. Johnston, L. A. Prosser, and S. C. K. Lee, “Differences in pedal forces during recumbent cycling in adolescents with and without cerebral palsy,” Clinical Biomechanics, vol. 23, no. 2, pp. 248–251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. T. E. Johnston, R. T. Lauer, and S. C. Lee, “The effects of a shank guide on cycling biomechanics of an adolescent with cerebral palsy: a single-case study,” Archives of Physical Medicine and Rehabilitation, vol. 89, no. 10, pp. 2025–2030, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. T. E. Johnston, A. E. Barr, and S. C. K. Lee, “Biomechanics of recumbent cycling in adolescents with cerebral palsy with and without the use of a fixed shank guide,” Gait and Posture, vol. 27, no. 4, pp. 539–546, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. C. G. A. McRae, T. E. Johnston, R. T. Lauer, A. M. Tokay, S. C. K. Lee, and K. J. Hunt, “Cycling for children with neuromuscular impairments using electrical stimulation-Development of tricycle-based systems,” Medical Engineering and Physics, vol. 31, no. 6, pp. 650–659, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. A. M. Tokay, C. G. McRae, T. Johnston, and S. C. Lee, “The use of functional electrical stimulation assisted cycling in adolescents with cerebral palsy,” Biomedizinische Technik—Biomedical Engineering, vol. 53, supplement 1, pp. 376–378, 2008. View at Google Scholar
  26. E. G. Fowler, L. M. Knutson, S. K. DeMuth et al., “Pediatric endurance and limb strengthening for children with cerebral palsy (PEDALS)—a randomized controlled trial protocol for a stationary cycling intervention,” BMC Pediatrics, vol. 7, article 14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. E. G. Fowler, L. M. Knutson, S. K. DeMuth et al., “Pediatric endurance and limb strengthening (PEDALS) for children with cerebral palsy using stationary cycling: a randomized controlled trial,” Physical Therapy, vol. 90, no. 3, pp. 367–381, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. S. L. Kaplan, “Cycling patterns in children with and without cerebral palsy,” Developmental Medicine and Child Neurology, vol. 37, no. 7, pp. 620–630, 1995. View at Google Scholar · View at Scopus
  29. H. Williams and T. Pountney, “Effects of a static bicycling programme on the functional ability of young people with cerebral palsy who are non-ambulant,” Developmental Medicine and Child Neurology, vol. 49, no. 7, pp. 522–527, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. T. E. Johnston, “Biomechanical considerations for cycling interventions in rehabilitation,” Physical Therapy, vol. 87, no. 9, pp. 1243–1252, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. R. T. Lauer, T. E. Johnston, B. T. Smith, and S. C. K. Lee, “Lower extremity muscle activity during cycling in adolescents with and without cerebral palsy,” Clinical Biomechanics, vol. 23, no. 4, pp. 442–449, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. L. D. Duffell, N. D. N. Donaldson, T. A. Perkins et al., “Long-term intensive electrically stimulated cycling by spinal cord-injured people: effect on muscle properties and their relation to power output,” Muscle and Nerve, vol. 38, no. 4, pp. 1304–1311, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. D. J. Newham and N. D. N. Donaldson, “FES cycling,” Acta Neurochirurgica, Supplementum, no. 97, pp. 395–402, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. G. M. Davis, N. A. Hamzaid, and C. Fornusek, “Cardiorespiratory, metabolic, and biomechanical responses during functional electrical stimulation leg exercise: health and fitness benefits,” Artificial Organs, vol. 32, no. 8, pp. 625–629, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. T. E. Johnston, B. T. Smith, O. Oladeji, R. R. Betz, and R. T. Lauer, “Outcomes of a home cycling program using functional electrical stimulation or passive motion for children with spinal cord injury: a case series,” Journal of Spinal Cord Medicine, vol. 31, no. 2, pp. 215–221, 2008. View at Google Scholar · View at Scopus
  36. L. Griffin, M. J. Decker, J. Y. Hwang et al., “Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury,” Journal of Electromyography and Kinesiology, vol. 19, no. 4, pp. 614–622, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Hjeltnes, A. K. Aksnes, K. I. Birkeland, J. Johansen, A. Lannem, and H. Wallberg-Henriksson, “Improved body composition after 8 wk of electrically stimulated leg cycling in tetraplegic patients,” American Journal of Physiology, vol. 273, no. 3, pp. R1072–R1079, 1997. View at Google Scholar · View at Scopus
  38. J. S. Petrofsky, H. Heaton Jr., and C. A. Phillips, “Outdoor bicycle for exercise in paraplegics and quadriplegics,” Journal of Biomedical Engineering, vol. 5, no. 4, pp. 292–296, 1983. View at Google Scholar · View at Scopus
  39. P. Krause, J. Szecsi, and A. Straube, “Changes in spastic muscle tone increase in patients with spinal cord injury using functional electrical stimulation and passive leg movements,” Clinical Rehabilitation, vol. 22, no. 7, pp. 627–634, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. G. C. B. Elder, J. Kirk, G. Stewart et al., “Contributing factors to muscle weakness in children with cerebral palsy,” Developmental Medicine and Child Neurology, vol. 45, no. 8, pp. 542–550, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. T. E. Johnston and S. F. Wainwright, “Cycling with functional electrical stimulation in an Adult with spastic diplegic cerebral palsy,” Physical Therapy, vol. 91, no. 6, pp. 970–982, 2011. View at Publisher · View at Google Scholar
  42. E. Trevisi, S. Gualdi, C. C. De et al., “Cycling induced by functional electrical stimulation in children affected by cerebral palsy: case report,” European Journal of Physical and Rehabilitation Medicine. In press. http://www.minervamedica.it/en/journals/europa-medicophysica/article.php?cod=R33Y9999N00A0114.
  43. R. Palisano, P. Rosenbaum, S. Walter, D. Russell, E. Wood, and B. Galuppi, “Development and reliability of a system to classify gross motor function in children with cerebral palsy,” Developmental Medicine and Child Neurology, vol. 39, no. 4, pp. 214–223, 1997. View at Google Scholar · View at Scopus
  44. T. E. Johnston, R. R. Betz, and R. T. Lauer, “Impact of cycling on hip subluxation in children with spinal cord injury,” Journal of Pediatric Orthopaedics, vol. 29, no. 4, pp. 402–405, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. M. J. Buchfuhrer, J. E. Hansen, T. E. Robinson, D. Y. Sue, K. Wasserman, and B. J. Whipp, “Optimizing the exercise protocol for cardiopulmonary assessment,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 55, no. 5, pp. 1558–1564, 1983. View at Google Scholar
  46. K. J. Hunt, B. A. Saunders, C. Perret et al., “Energetics of paraplegic cycling: a new theoretical framework and efficiency characterisation for untrained subjects,” European Journal of Applied Physiology, vol. 101, no. 3, pp. 277–285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Ferrante, A. Pedrocchi, G. Ferrigno, and F. Molteni, “Cycling induced by functional electrical stimulation improves the muscular strength and the motor control of individuals with post-acute stroke. Europa Medico-Physica-SIMFER,” European Journal of Physical and Rehabilitation Medicine, vol. 44, no. 2, pp. 159–167, 2008. View at Google Scholar