Table of Contents
International Journal of Peptides
Volume 2010, Article ID 158102, 8 pages
http://dx.doi.org/10.1155/2010/158102
Review Article

Ghrelin in Female and Male Reproduction

Unité de Physiologie de la Reproduction et des Comportements, INRA, UMR85, 37 380 Nouzilly, France

Received 5 October 2009; Revised 23 December 2009; Accepted 9 January 2010

Academic Editor: Alessandro Laviano

Copyright © 2010 Joëlle Dupont et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, and K. Kangawa, “Ghrelin is a growth-hormone-releasing acylated peptide from stomach,” Nature, vol. 402, no. 6762, pp. 656–660, 1999. View at Publisher · View at Google Scholar · View at PubMed
  2. M. Kojima, H. Hosoda, and K. Kangawa, “Purification and distribution of ghrelin: the natural endogenous ligand for the growth hormone secretagogue receptor,” Hormone Research, vol. 56, supplement 1, pp. 93–97, 2001. View at Google Scholar
  3. M. Kojima, H. Hosoda, H. Matsuo, and K. Kangawa, “Ghrelin: discovery of the natural endogenous ligand for the growth hormone secretagogue receptor,” Trends in Endocrinology and Metabolism, vol. 12, no. 3, pp. 118–122, 2001. View at Google Scholar
  4. M. Kojima and K. Kangawa, “Ghrelin: structure and function,” Physiological Reviews, vol. 85, no. 2, pp. 495–522, 2005. View at Publisher · View at Google Scholar · View at PubMed
  5. M. L. Barreiro and M. Tena-Sempere, “Ghrelin and reproduction: a novel signal linking energy status and fertility?” Molecular and Cellular Endocrinology, vol. 226, no. 1-2, pp. 1–9, 2004. View at Publisher · View at Google Scholar · View at PubMed
  6. O. Gualillo, F. Lago, J. Gómez-Reino, F. F. Casanueva, and C. Dieguez, “Ghrelin, a widespread hormone: insights into molecular and cellular regulation of its expression and mechanism of action,” FEBS Letters, vol. 552, no. 2-3, pp. 105–109, 2003. View at Publisher · View at Google Scholar
  7. A. J. van der Lely, M. Tschöp, M. L. Heiman, and E. Ghigo, “Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin,” Endocrine Reviews, vol. 25, no. 3, pp. 426–457, 2004. View at Publisher · View at Google Scholar · View at PubMed
  8. C. De Vriese and C. Delporte, “Ghrelin: a new peptide regulating growth hormone release and food intake,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 8, pp. 1420–1424, 2008. View at Publisher · View at Google Scholar · View at PubMed
  9. L. M. Seoane, O. Al-Massadi, M. Lage, C. Dieguez, and F. F. Casanueva, “Ghrelin: from a GH-secretagogue to the regulation of food intake, sleep and anxiety,” Pediatric Endocrinology Reviews, vol. 1, supplement 3, pp. 432–437, 2004. View at Google Scholar
  10. T. R. Castañeda, J. Tong, R. Datta, M. Culler, and M. H. Tschöp, “Ghrelin in the regulation of body weight and metabolism,” Frontiers in Neuroendocrinology, vol. 31, no. 1, pp. 44–60, 2010. View at Publisher · View at Google Scholar · View at PubMed
  11. T. L. Peeters, “Potential of ghrelin as a therapeutic approach for gastrointestinal motility disorders,” Current Opinion in Pharmacology, vol. 6, no. 6, pp. 553–558, 2006. View at Publisher · View at Google Scholar · View at PubMed
  12. M. J. Iglesias, R. Piñeiro, M. Blanco et al., “Growth hormone releasing peptide (ghrelin) is synthesized and secreted by cardiomyocytes,” Cardiovascular Research, vol. 62, no. 3, pp. 481–488, 2004. View at Publisher · View at Google Scholar · View at PubMed
  13. R. Granata, F. Settanni, L. Biancone et al., “Acylated and unacylated ghrelin promote proliferation and inhibit apoptosis of pancreatic β-cells and human islets: involvement of 3,5-cyclic adenosine monophosphate/protein kinase A, extracellular signal-regulated kinase 1/2, and phosphatidyl inositol 3-kinase/Akt signaling,” Endocrinology, vol. 148, no. 2, pp. 512–529, 2007. View at Publisher · View at Google Scholar · View at PubMed
  14. D. D. Taub, “Novel connections between the neuroendocrine and immune systems: the ghrelin immunoregulatory network,” Vitamins and Hormones, vol. 77, pp. 325–346, 2007. View at Publisher · View at Google Scholar · View at PubMed
  15. Y. Nishi, H. Hiejima, H. Hosoda et al., “Ingested medium-chain fatty acids are directly utilized for the acyl modification of ghrelin,” Endocrinology, vol. 146, no. 5, pp. 2255–2264, 2005. View at Publisher · View at Google Scholar · View at PubMed
  16. Y. Date, N. Murakami, M. Kojima et al., “Central effects of a novel acylated peptide, ghrelin, on growth hormone release in rats,” Biochemical and Biophysical Research Communications, vol. 275, no. 2, pp. 477–480, 2000. View at Publisher · View at Google Scholar · View at PubMed
  17. K. Toshinai, M. S. Mondal, M. Nakazato et al., “Upregulation of ghrelin expression in the stomach upon fasting, insulin-induced hypoglycemia, and leptin administration,” Biochemical and Biophysical Research Communications, vol. 281, no. 5, pp. 1220–1225, 2001. View at Publisher · View at Google Scholar · View at PubMed
  18. H. Ariyasu, K. Takaya, T. Tagami et al., “Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 10, pp. 4753–4758, 2001. View at Publisher · View at Google Scholar
  19. M. Tschöp, D. L. Smiley, and M. L. Heiman, “Ghrelin induces adiposity in rodents,” Nature, vol. 407, no. 6806, pp. 908–913, 2000. View at Publisher · View at Google Scholar · View at PubMed
  20. A. M. Wren, C. J. Small, H. L. Ward et al., “The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion,” Endocrinology, vol. 141, no. 11, pp. 4325–4328, 2000. View at Google Scholar
  21. M. Nakazato, N. Murakami, Y. Date et al., “A role for ghrelin in the central regulation of feeding,” Nature, vol. 409, no. 6817, pp. 194–198, 2001. View at Publisher · View at Google Scholar · View at PubMed
  22. J. M. Zigman, Y. Nakano, R. Coppari et al., “Mice lacking ghrelin receptors resist the development of diet-induced obesity,” Journal of Clinical Investigation, vol. 115, no. 12, pp. 3564–3572, 2005. View at Publisher · View at Google Scholar · View at PubMed
  23. D. E. Cummings, J. Q. Purnell, R. S. Frayo, K. Schmidova, B. E. Wisse, and D. S. Weigle, “A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans,” Diabetes, vol. 50, no. 8, pp. 1714–1719, 2001. View at Google Scholar
  24. D. E. Cummings, R. S. Frayo, C. Marmonier, R. Aubert, and D. Chapelot, “Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues,” American Journal of Physiology, vol. 287, no. 2, pp. E297–E304, 2004. View at Publisher · View at Google Scholar · View at PubMed
  25. D. E. Cummings, A. M. Naleid, and D. P. Figlewicz Lattemann, “Ghrelin: a link between energy homeostasis and drug abuse?” Addiction Biology, vol. 12, no. 1, pp. 1–5, 2007. View at Publisher · View at Google Scholar · View at PubMed
  26. T. Hayashida, K. Murakami, K. Mogi et al., “Ghrelin in domestic animals: distribution in stomach and its possible role,” Domestic Animal Endocrinology, vol. 21, no. 1, pp. 17–24, 2001. View at Publisher · View at Google Scholar
  27. N. Govoni, R. De Iasio, C. Cocco et al., “Gastric immunolocalization and plasma profiles of acyl-ghrelin in fasted and fasted-refed prepuberal gilts,” Journal of Endocrinology, vol. 186, no. 3, pp. 505–513, 2005. View at Publisher · View at Google Scholar · View at PubMed
  28. M. Matsubara, I. Sakata, R. Wada, M. Yamazaki, K. Inoue, and T. Sakai, “Estrogen modulates ghrelin expression in the female rat stomach,” Peptides, vol. 25, no. 2, pp. 289–297, 2004. View at Publisher · View at Google Scholar · View at PubMed
  29. A. Rak and E. L. Gregoraszczuk, “Modulatory effect of ghrelin in prepubertal porcine ovarian follicles,” Journal of Physiology and Pharmacology, vol. 59, no. 4, pp. 781–793, 2008. View at Google Scholar
  30. J. Kamegai, H. Tamura, T. Shimizu, S. Ishii, H. Sugihara, and I. Wakabayashi, “Estrogen receptor (ER)α, but not ERβ, gene is expressed in growth hormone-releasing hormone neurons of the male rat hypothalamus,” Endocrinology, vol. 142, no. 2, pp. 538–543, 2001. View at Publisher · View at Google Scholar
  31. A. D. Howard, S. D. Feighner, D. F. Cully et al., “A receptor in pituitary and hypothalamus that functions in growth hormone release,” Science, vol. 273, no. 5277, pp. 974–977, 1996. View at Google Scholar
  32. K. K. McKee, C. P. Tan, O. C. Palyha et al., “Cloning and characterization of two human G protein-coupled receptor genes (GPR38 and GPR39) related to the growth hormone secretagogue and neurotensin receptors,” Genomics, vol. 46, no. 3, pp. 426–434, 1997. View at Publisher · View at Google Scholar · View at PubMed
  33. R. G. Smith, L. H. T. Van der Ploeg, A. D. Howard et al., “Peptidomimetic regulation of growth hormone secretion,” Endocrine Reviews, vol. 18, no. 5, pp. 621–645, 1997. View at Publisher · View at Google Scholar
  34. S.-S. Pong, L.-Y. P. Chaung, D. C. Dean, R. P. Nargund, A. A. Patchett, and R. G. Smith, “Identification of a new G-protein-linked receptor for growth hormone secretagogues,” Molecular Endocrinology, vol. 10, no. 1, pp. 57–61, 1996. View at Publisher · View at Google Scholar
  35. R. G. Smith, S.-S. Pong, G. Hickey et al., “Modulation of pulsatile GH release through a novel receptor in hypothalamus and pituitary gland,” Recent Progress in Hormone Research, vol. 51, pp. 261–286, 1996. View at Google Scholar
  36. A. P. Davenport, T. I. Bonner, S. M. Foord et al., “International union of pharmacology. LVI. Ghrelin receptor nomenclature, distribution, and function,” Pharmacological Reviews, vol. 57, no. 4, pp. 541–546, 2005. View at Publisher · View at Google Scholar · View at PubMed
  37. A. Rak, D. Szczepankiewicz, and E. Ł. Gregoraszczuk, “Expression of ghrelin receptor, GHSR-1a, and its functional role in the porcine ovarian follicles,” Growth Hormone and IGF Research, vol. 19, no. 1, pp. 68–76, 2009. View at Publisher · View at Google Scholar · View at PubMed
  38. P.-K. Leung, K. B. S. Chow, P.-N. Lau et al., “The truncated ghrelin receptor polypeptide (GHS-R1b) acts as a dominant-negative mutant of the ghrelin receptor,” Cellular Signalling, vol. 19, no. 5, pp. 1011–1022, 2007. View at Publisher · View at Google Scholar · View at PubMed
  39. S. M. E. Geelissen, I. M. E. Beck, V. M. Darras, E. R. Kühn, and S. Van Der Geyten, “Distribution and regulation of chicken growth hormone secretagogue receptor isoforms,” General and Comparative Endocrinology, vol. 134, no. 2, pp. 167–174, 2003. View at Publisher · View at Google Scholar
  40. M. Tanaka, T. Miyazaki, I. Yamamoto et al., “Molecular characterization of chicken growth hormone secretagogue receptor gene,” General and Comparative Endocrinology, vol. 134, no. 2, pp. 198–202, 2003. View at Publisher · View at Google Scholar
  41. E.-S. Saito, H. Kaiya, T. Tachibana et al., “Inhibitory effect of ghrelin on food intake is mediated by the corticotropin-releasing factor system in neonatal chicks,” Regulatory Peptides, vol. 125, no. 1–3, pp. 201–208, 2005. View at Publisher · View at Google Scholar · View at PubMed
  42. M. P. Richards, S. M. Poch, and J. P. McMurtry, “Characterization of turkey and chicken ghrelin genes, and regulation of ghrelin and ghrelin receptor mRNA levels in broiler chickens,” General and Comparative Endocrinology, vol. 145, no. 3, pp. 298–310, 2006. View at Publisher · View at Google Scholar · View at PubMed
  43. S. Gnanapavan, B. Kola, S. A. Bustin et al., “The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 6, pp. 2988–2991, 2002. View at Publisher · View at Google Scholar
  44. R. M. Luque, S. Park, X.-D. Peng et al., “Homologous and heterologous in vitro regulation of pig pituitary somatostatin receptor subtypes, sst1, sst2 and sst5 mRNA,” Journal of Molecular Endocrinology, vol. 32, no. 2, pp. 437–448, 2004. View at Publisher · View at Google Scholar
  45. R. D. Orkin, D. I. New, D. Norman et al., “Rapid desensitisation of the GH secretagogue (ghrelin) receptor to hexarelin in vitro,” Journal of Endocrinological Investigation, vol. 26, no. 8, pp. 743–747, 2003. View at Google Scholar
  46. J. P. Camiña, M. C. Carreira, S. E. Messari, C. Llorens-Cortes, R. G. Smith, and F. F. Casanueva, “Desensitization and endocytosis mechanisms of ghrelin-activated growth hormone secretagogue receptor 1a,” Endocrinology, vol. 145, no. 2, pp. 930–940, 2004. View at Publisher · View at Google Scholar · View at PubMed
  47. J. Herrington and B. Hille, “Growth hormone-releasing hexapeptide elevates intracellular calcium in rat somatotropes by two mechanisms,” Endocrinology, vol. 135, no. 3, pp. 1100–1108, 1994. View at Publisher · View at Google Scholar
  48. A. Lania, E. Ballaré, S. Corbetta, M. Filopanti, L. Persani, and A. Spada, “Growth hormone-releasing hexapeptide (GHRP-6) increases intracellular calcium concentrations in cultured cells from human pituitary adenomas of different types,” European Journal of Endocrinology, vol. 139, no. 3, pp. 343–348, 1998. View at Publisher · View at Google Scholar
  49. U. Andersson, K. Filipsson, C. R. Abbott et al., “AMP-activated protein kinase plays a role in the control of food intake,” Journal of Biological Chemistry, vol. 279, no. 13, pp. 12005–12008, 2004. View at Publisher · View at Google Scholar · View at PubMed
  50. B. Kola, E. Hubina, S. A. Tucci et al., “Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase,” Journal of Biological Chemistry, vol. 280, no. 26, pp. 25196–25201, 2005. View at Publisher · View at Google Scholar · View at PubMed
  51. R. Barazzoni, A. Bosutti, M. Stebel et al., “Ghrelin regulates mitochondrial-lipid metabolism gene expression and tissue fat distribution in liver and skeletal muscle,” American Journal of Physiology, vol. 288, no. 1, pp. E228–E235, 2005. View at Publisher · View at Google Scholar · View at PubMed
  52. X. Xu, S. J. Bong, H. H. Chang, and Z.-G. Jin, “Molecular mechanisms of ghrelin-mediated endothelial nitric oxide synthase activation,” Endocrinology, vol. 149, no. 8, pp. 4183–4192, 2008. View at Publisher · View at Google Scholar · View at PubMed
  53. M. Iantorno, H. Chen, J.-A. Kim et al., “Ghrelin has novel vascular actions that mimic PI 3-kinase-dependent actions of insulin to stimulate production of NO from endothelial cells,” American Journal of Physiology, vol. 292, no. 3, pp. E756–E764, 2007. View at Publisher · View at Google Scholar · View at PubMed
  54. H. Zhao, G. Liu, Q. Wang et al., “Effect of ghrelin on human endothelial cells apoptosis induced by high glucose,” Biochemical and Biophysical Research Communications, vol. 362, no. 3, pp. 677–681, 2007. View at Publisher · View at Google Scholar · View at PubMed
  55. Y. J. Park, Y. J. Lee, S. H. Kim et al., “Ghrelin enhances the proliferating effect of thyroid stimulating hormone in FRTL-5 thyroid cells,” Molecular and Cellular Endocrinology, vol. 285, no. 1-2, pp. 19–25, 2008. View at Publisher · View at Google Scholar · View at PubMed
  56. S. W. Kim, O. K. Choi, J. Y. Jung et al., “Ghrelin inhibits early osteogenic differentiation of C3H10T1/2 cells by suppressing Runx2 expression and enhancing PPARγ and C/EBPα expression,” Journal of Cellular Biochemistry, vol. 106, no. 4, pp. 626–632, 2009. View at Publisher · View at Google Scholar · View at PubMed
  57. W. G. Li, D. Gavrila, X. Liu et al., “Ghrelin inhibits proinflammatory responses and nuclear factor-κB activation in human endothelial cells,” Circulation, vol. 109, no. 18, pp. 2221–2226, 2004. View at Publisher · View at Google Scholar · View at PubMed
  58. M.-C. Lebrethon, A. Aganina, M. Fournier, A. Gérard, A. S. Parent, and J. P. Bourguignon, “Effects of in vivo and in vitro administration of ghrelin, leptin and neuropeptide mediators on pulsatile gonadotrophin-releasing hormone secretion from male rat hypothalamus before and after puberty,” Journal of Neuroendocrinology, vol. 19, no. 3, pp. 181–188, 2007. View at Publisher · View at Google Scholar · View at PubMed
  59. R. Fernandez-Fernandez, M. Tena-Sempere, V. M. Navarro et al., “Effects of ghrelin upon gonadotropin-releasing hormone and gonadotropin secretion in adult female rats: in vivo and in vitro studies,” Neuroendocrinology, vol. 82, no. 5-6, pp. 245–255, 2005. View at Publisher · View at Google Scholar · View at PubMed
  60. R. Fernandez-Fernandez, M. Tena-Sempere, J. Roa et al., “Direct stimulatory effect of ghrelin on pituitary release of LH through a nitric oxide-dependent mechanism that is modulated by estrogen,” Reproduction, vol. 133, no. 6, pp. 1223–1232, 2007. View at Publisher · View at Google Scholar · View at PubMed
  61. R. Fernandez-Fernandez, M. Tena-Sempere, E. Aguilar, and L. Pinilla, “Ghrelin effects on gonadotropin secretion in male and female rats,” Neuroscience Letters, vol. 362, no. 2, pp. 103–107, 2004. View at Publisher · View at Google Scholar · View at PubMed
  62. J. L. Harrison, D. W. Miller, P. A. Findlay, and C. L. Adam, “Photoperiod influences the central effects of ghrelin on food intake, GH and LH secretion in sheep,” Neuroendocrinology, vol. 87, no. 3, pp. 182–192, 2008. View at Publisher · View at Google Scholar · View at PubMed
  63. N. R. Vulliemoz, E. Xiao, L. Xia-Zhang, J. Rivier, and M. Ferin, “Astressin B, a nonselective corticotropin-releasing hormone receptor antagonist, prevents the inhibitory effect of ghrelin on luteinizing hormone pulse frequency in the ovariectomized rhesus monkey,” Endocrinology, vol. 149, no. 3, pp. 869–874, 2008. View at Publisher · View at Google Scholar · View at PubMed
  64. F. Lanfranco, L. Bonelli, M. Baldi, E. Me, F. Broglio, and E. Ghigo, “Acylated ghrelin inhibits spontaneous luteinizing hormone pulsatility and responsiveness to naloxone but not that to gonadotropin-releasing hormone in young men: evidence for a central inhibitory action of ghrelin on the gonadal axis,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 9, pp. 3633–3639, 2008. View at Publisher · View at Google Scholar · View at PubMed
  65. S. Forbes, X. F. Li, J. Kinsey-Jones, and K. O'Byrne, “Effects of ghrelin on Kisspeptin mRNA expression in the hypothalamic medial preoptic area and pulsatile luteinising hormone secretion in the female rat,” Neuroscience Letters, vol. 460, no. 2, pp. 143–147, 2009. View at Publisher · View at Google Scholar · View at PubMed
  66. C. I. Messini, K. Dafopoulos, N. Chalvatzas, P. Georgoulias, and I. E. Messinis, “Effect of ghrelin on gonadotrophin secretion in women during the menstrual cycle,” Human Reproduction, vol. 24, no. 4, pp. 976–981, 2009. View at Publisher · View at Google Scholar · View at PubMed
  67. S. Unniappan, L. F. Canosa, and R. E. Peter, “Orexigenic actions of ghrelin in goldfish: feeding-induced changes in brain and gut mRNA expression and serum levels, and responses to central and peripheral injections,” Neuroendocrinology, vol. 79, no. 2, pp. 100–108, 2004. View at Publisher · View at Google Scholar · View at PubMed
  68. S. Unniappan and R. E. Peter, “In vitro and in vivo effects of ghrelin on luteinizing hormone and growth hormone release in goldfish,” American Journal of Physiology, vol. 286, no. 6, pp. R1093–R1101, 2004. View at Publisher · View at Google Scholar · View at PubMed
  69. S. Unniappan and R. E. Peter, “Structure, distribution and physiological functions of ghrelin in fish,” Comparative Biochemistry and Physiology—Part A, vol. 140, no. 4, pp. 396–408, 2005. View at Publisher · View at Google Scholar · View at PubMed
  70. M. Sokolowska-Mikolajczyk, M. Socha, P. Szczerbik, and P. Epler, “The effects of ghrelin on the in vitro spontaneous and sGnRH-A stimulated luteinizing hormone (LH) release from the pituitary cells of common carp (Cyprinus carpio L.),” Comparative Biochemistry and Physiology—Part A, vol. 153, no. 4, pp. 386–390, 2009. View at Publisher · View at Google Scholar · View at PubMed
  71. J. P. Chang, J. D. Johnson, G. R. Sawisky et al., “Signal transduction in multifactorial neuroendocrine control of gonadotropin secretion and synthesis in teleosts-studies on the goldfish model,” General and Comparative Endocrinology, vol. 161, no. 1, pp. 42–52, 2009. View at Publisher · View at Google Scholar · View at PubMed
  72. J. E. Caminos, M. Tena-Sempere, F. Gaytán et al., “Expression of ghrelin in the cyclic and pregnant rat ovary,” Endocrinology, vol. 144, no. 4, pp. 1594–1602, 2003. View at Publisher · View at Google Scholar
  73. W. Zhang, Z. Lei, J. Su, and S. Chen, “Expression of ghrelin in the porcine hypothalamo-pituitary-ovary axis during the estrous cycle,” Animal Reproduction Science, vol. 109, no. 1–4, pp. 356–367, 2008. View at Publisher · View at Google Scholar · View at PubMed
  74. D. W. Miller, J. L. Harrison, Y. A. Brown et al., “Immunohistochemical evidence for an endocrine/paracrine role for ghrelin in the reproductive tissues of sheep apdat 20051031,” Reproductive Biology and Endocrinology, vol. 3, article 60, 2005. View at Publisher · View at Google Scholar · View at PubMed
  75. F. Gaytan, M. L. Barreiro, L. K. Chopin et al., “Immunolocalization of ghrelin and its functional receptor, the type 1a growth hormone secretagogue receptor, in the cyclic human ovary,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 2, pp. 879–887, 2003. View at Publisher · View at Google Scholar
  76. A. V. Sirotkin, R. Grossmann, M. T. María-Peon, J. Roa, M. Tena-Sempere, and S. Klein, “Novel expression and functional role of ghrelin in chicken ovary,” Molecular and Cellular Endocrinology, vol. 257-258, pp. 15–25, 2006. View at Publisher · View at Google Scholar · View at PubMed
  77. C. Du, H. Li, G. Cao, Xilingaowa, C. Wang, and C. Li, “Expression of the orexigenic peptide ghrelin and the type 1a growth hormone secretagogue receptor in sheep oocytes and pre-implantation embryos produced in vitro,” Reproduction in Domestic Animals, vol. 45, no. 1, pp. 92–98, 2010. View at Publisher · View at Google Scholar · View at PubMed
  78. F. Gaytan, C. Morales, M. L. Barreiro et al., “Expression of growth hormone secretagogue receptor type 1a, the functional ghrelin receptor, in human ovarian surface epithelium, mullerian duct derivatives, and ovarian tumors,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 3, pp. 1798–1804, 2005. View at Publisher · View at Google Scholar · View at PubMed
  79. A. Kheradmand, L. Roshangar, M. Taati, and A. V. Sirotkin, “Morphometrical and intracellular changes in rat ovaries following chronic administration of ghrelin,” Tissue and Cell, vol. 41, no. 5, pp. 311–317, 2009. View at Publisher · View at Google Scholar · View at PubMed
  80. I. Viani, A. Vottero, F. Tassi et al., “Ghrelin inhibits steroid biosynthesis by cultured granulosa-lutein cells,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 4, pp. 1476–1481, 2008. View at Publisher · View at Google Scholar · View at PubMed
  81. A. Tropea, F. Tiberi, F. Minici et al., “Ghrelin affects the release of luteolytic and luteotropic factors in human luteal cells,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 8, pp. 3239–3245, 2007. View at Publisher · View at Google Scholar · View at PubMed
  82. A. V. Sirotkin, J. Rafay, J. Kotwica, K. Darlak, and F. Valenzuela, “Role of ghrelin in regulating rabbit ovarian function and the response to LH and IGF-I,” Domestic Animal Endocrinology, vol. 36, no. 3, pp. 162–172, 2009. View at Publisher · View at Google Scholar · View at PubMed
  83. A. V. Sirotkin and R. Grossmann, “Effects of ghrelin and its analogues on chicken ovarian granulosa cells,” Domestic Animal Endocrinology, vol. 34, no. 2, pp. 125–134, 2008. View at Publisher · View at Google Scholar · View at PubMed
  84. A. V. Sirotkin and R. Grossmann, “The role of ghrelin and some intracellular mechanisms in controlling the secretory activity of chicken ovarian cells,” Comparative Biochemistry and Physiology—Part A, vol. 147, no. 1, pp. 239–246, 2007. View at Publisher · View at Google Scholar · View at PubMed
  85. K. Kawamura, N. Sato, J. Fukuda et al., “Ghrelin inhibits the development of mouse preimplantation embryos in vitro,” Endocrinology, vol. 144, no. 6, pp. 2623–2633, 2003. View at Publisher · View at Google Scholar
  86. H. Suzuki, Y. Sasaki, M. Shimizu, M. Matsuzaki, T. Hashizume, and H. Kuwayama, “Ghrelin and leptin did not improve meiotic maturation of porcine oocytes cultured in vitro,” Reproduction in Domestic Animals. In press. View at Publisher · View at Google Scholar · View at PubMed
  87. K. Zhang, H.-X. Wei, Y.-H. Zhang et al., “Effects of ghrelin on in vitro development of porcine in vitro fertilized and parthenogenetic embryos,” Journal of Reproduction and Development, vol. 53, no. 3, pp. 647–653, 2007. View at Publisher · View at Google Scholar
  88. K. Nakahara, M. Nakagawa, Y. Baba et al., “Maternal ghrelin plays an important role in rat fetal development during pregnancy,” Endocrinology, vol. 147, no. 3, pp. 1333–1342, 2006. View at Publisher · View at Google Scholar · View at PubMed
  89. A. C. Martini, R. Fernandez-Fernandez, S. Tovar et al., “Comparative analysis of the effects of ghrelin and unacylated ghrelin on luteinizing hormone secretion in male rats,” Endocrinology, vol. 147, no. 5, pp. 2374–2382, 2006. View at Publisher · View at Google Scholar · View at PubMed
  90. M. L. Barreiro, F. Gaytán, J. E. Caminos et al., “Cellular location and hormonal regulation of ghrelin expression in rat testis,” Biology of Reproduction, vol. 67, no. 6, pp. 1768–1776, 2002. View at Publisher · View at Google Scholar
  91. M. Tena-Sempere, M. L. Barreiro, L. C. González et al., “Novel expression and functional role of ghrelin in rat testis,” Endocrinology, vol. 143, no. 2, pp. 717–725, 2002. View at Publisher · View at Google Scholar
  92. F. Gaytan, M. L. Barreiro, J. E. Caminos et al., “Expression of ghrelin and its functional receptor, the type 1a growth hormone secretagogue receptor, in normal human testis and testicular tumors,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 1, pp. 400–409, 2004. View at Publisher · View at Google Scholar
  93. T. Ishikawa, H. Fujioka, T. Ishimura, A. Takenaka, and M. Fujisawa, “Ghrelin expression in human testis and serum testosterone level,” Journal of Andrology, vol. 28, no. 2, pp. 320–324, 2007. View at Publisher · View at Google Scholar · View at PubMed
  94. M. L. Barreiro, J. S. Suominen, F. Gaytán et al., “Developmental, stage-specific, and hormonally regulated expression of growth hormone secretagogue receptor messenger RNA in rat testis,” Biology of Reproduction, vol. 68, no. 5, pp. 1631–1640, 2003. View at Publisher · View at Google Scholar · View at PubMed
  95. M. C. García, M. López, C. V. Alvarez, F. Casanueva, M. Tena-Sempere, and C. Diéguez, “Role of ghrelin in reproduction,” Reproduction, vol. 133, no. 3, pp. 531–540, 2007. View at Publisher · View at Google Scholar · View at PubMed
  96. A. V. Sirotkin, M. Chrenková, S. Nitrayová et al., “Effects of chronic food restriction and treatments with leptin or ghrelin on different reproductive parameters of male rats,” Peptides, vol. 29, no. 8, pp. 1362–1368, 2008. View at Publisher · View at Google Scholar · View at PubMed