Table of Contents
International Journal of Peptides
Volume 2010 (2010), Article ID 275804, 6 pages
http://dx.doi.org/10.1155/2010/275804
Review Article

Differential Roles for Octanoylated and Decanoylated Ghrelins in Regulating Appetite and Metabolism

Department of Biology, California State University—Fresno, 2555 E. San Ramon Avenue, Fresno, CA 93720, USA

Received 1 November 2009; Accepted 23 December 2009

Academic Editor: Akio Inui

Copyright © 2010 Sara E. Schwandt et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, and K. Kangawa, “Ghrelin is a growth-hormone-releasing acylated peptide from stomach,” Nature, vol. 402, no. 6762, pp. 656–660, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Hosoda, M. Kojima, H. Matsuo, and K. Kangawa, “Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue,” Biochemical and Biophysical Research Communications, vol. 279, no. 3, pp. 909–913, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. N. M. Thompson, D. A. S. Gill, R. Davies et al., “Ghrelin and des-octanoyl ghrelin promote adipogenesis directlyin vivo by a mechanism independent of GHS-R1a,” Endocrinology, vol. 145, no. 1, pp. 234–242, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Gauna, P. J. D. Delhanty, L. J. Hofland et al., “Ghrelin stimulates, whereas des-octanoyl ghrelin inhibits, glucose output by primary hepatocytes,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 2, pp. 1055–1060, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Asakawa, A. Inui, M. Fujimiya et al., “Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin,” Gut, vol. 54, no. 1, pp. 18–24, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Y. Chen, A. Inui, A. Asakawa et al., “Des-acyl ghrelin acts by CRF type 2 receptors to disrupt fasted stomach motility in conscious rats,” Gastroenterology, vol. 129, no. 1, pp. 8–25, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Sato, K. Nakahara, S. Goto et al., “Effects of ghrelin and des-acyl ghrelin on neurogenesis of the rat fetal spinal cord,” Biochemical and Biophysical Research Communications, vol. 350, no. 3, pp. 598–603, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Kaiya, M. Miyazato, K. Kangawa, R. E. Peter, and S. Unniappan, “Ghrelin: a multifunctional hormone in non-mammalian vertebrates,” Comparative Biochemistry and Physiology, vol. 149, no. 2, pp. 109–128, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Kaiya, M. Kojima, H. Hosoda et al., “Identification of tilapia ghrelin and its effects on growth hormone and prolactin release in the tilapia, Oreochromis mossambicus,” Comparative Biochemistry and Physiology B, vol. 135, no. 3, pp. 421–429, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Miura, K. Maruyama, H. Kaiya et al., “Purification and properties of ghrelin from the intestine of the goldfish, Carassius auratus,” Peptides, vol. 30, no. 4, pp. 758–765, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Hosoda, M. Kojima, T. Mizushima, S. Shimizu, and K. Kangawa, “Structural divergence of human ghrelin: identification of multiple ghrelin-derived molecules produced by post-translational processing,” The Journal of Biological Chemistry, vol. 278, no. 1, pp. 64–70, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Kaiya, M. Kojima, H. Hosoda et al., “Bullfrog ghrelin is modified by n-octanoic acid at its third threonine residue,” The Journal of Biological Chemistry, vol. 276, no. 44, pp. 40441–40448, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Kaiya, M. Kojima, H. Hosoda et al., “Amidated fish ghrelin: purification, cDNA cloning in the Japanese eel and its biological activity,” Journal of Endocrinology, vol. 176, no. 3, pp. 415–423, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Blazquez, P. T. Bosma, E. J. Fraser, K. J. W. van Look, and V. L. Trudeau, “Fish as models for the neuroendocrine regulation of reproduction and growth,” Comparative Biochemistry and Physiology C, vol. 119, no. 3, pp. 345–364, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. M. A. Sheridan, “Effects of epinephrine and norepinephrine on lipid mobilization from coho salmon liver incubated in vitro,” Endocrinology, vol. 120, no. 6, pp. 2234–2239, 1987. View at Google Scholar · View at Scopus
  16. C. Duan, J. Ding, Q. Li, W. Tsai, and K. Pozios, “Insulin-like growth factor binding protein 2 is a growth inhibitory protein conserved in zebrafish,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 26, pp. 15274–15279, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Toyoshima, C. Monson, C. Duan et al., “The role of insulin receptor signaling in zebrafish embryogenesis,” Endocrinology, vol. 149, no. 12, pp. 5996–6005, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Unniappan and R. E. Peter, “In vitro and in vivo effects of ghrelin on luteinizing hormone and growth hormone release in goldfish,” American Journal of Physiology, vol. 286, no. 6, pp. R1093–R1101, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Ghigo, F. Broglio, E. Arvat, M. Maccario, M. Papotti, and G. Muccioli, “Ghrelin: more than a natural GH secretagogue and/or an orexigenic factor,” Clinical Endocrinology, vol. 62, no. 1, pp. 1–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Kojima and K. Kangawa, “Structure and function of ghrelin,” in Orphan G Protein-Coupled Receptors and Novel Neuropeptides, O. Civelli and Q.-Y. Zhou, Eds., pp. 90–115, Springer, Berlin, Germany, 2008. View at Google Scholar
  21. T. Sato, M. Kurokawa, Y. Nakashima et al., “Ghrelin deficiency does not influence feeding performance,” Regulatory Peptides, vol. 145, no. 1–3, pp. 7–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Broglio, F. Prodam, F. Riganti, G. Muccioli, and E. Ghigo, “Ghrelin: from somatotrope secretion to new perspectives in the regulation of peripheral metabolic functions,” Frontiers of Hormone Research, vol. 35, pp. 102–114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Pusztai, B. Sarman, E. Ruzicska et al., “Ghrelin: a new peptide regulating the neurohormonal system, energy homeostasis and glucose metabolism,” Diabetes/Metabolism Research and Reviews, vol. 24, no. 5, pp. 343–352, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Scrimgeour, M. J. Gresham, L. R. Giles, P. C. Thomson, P. C. Wynn, and R. E. Newman, “Ghrelin secretion is more closely aligned to energy balance than with feeding behaviour in the grower pig,” Journal of Endocrinology, vol. 198, no. 1, pp. 135–145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. L. G. Riley, T. Hirano, and E. G. Grau, “Rat ghrelin stimulates growth hormone and prolactin release in the tilapia, Oreochromis mossambicus,” Zoological Science, vol. 19, no. 7, pp. 797–800, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. B. K. Fox, L. G. Riley, H. Kaiya, T. Hirano, and E. G. Grau, “Effects of homologous ghrelins on the growth hormone/insulin-like growth factor-I axis in the tilapia, Oreochromis mossambicus,” Zoological Science, vol. 24, no. 4, pp. 391–400, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Kaiya, M. Kojima, H. Hosoda et al., “Peptide purification, complementary deoxyribonucleic acid (DNA) and genomic DNA cloning, and functional characterization of ghrelin in rainbow trout,” Endocrinology, vol. 144, no. 12, pp. 5215–5226, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. M. E. Picha, C. N. Strom, L. G. Riley et al., “Plasma ghrelin and growth hormone regulation in response to metabolic state in hybrid striped bass: effects of feeding, ghrelin and insulin-like growth factor-I on in vivo and in vitro GH secretion,” General and Comparative Endocrinology, vol. 161, no. 3, pp. 365–372, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. F. Muller, S. W. J. Lamberts, J. A. Janssen et al., “Ghrelin drives GH secretion during fasting in man,” European Journal of Endocrinology, vol. 146, no. 2, pp. 203–207, 2002. View at Google Scholar · View at Scopus
  30. S. Unniappan, L. F. Canosa, and R. E. Peter, “Orexigenic actions of ghrelin in goldfish: feeding-induced changes in brain and gut mRNA expression and serum levels, and responses to central and peripheral injections,” Neuroendocrinology, vol. 79, no. 2, pp. 100–108, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Unniappan, X. Lin, L. Cervini et al., “Goldfish ghrelin: molecular characterization of the complementary deoxyribonucleic acid, partial gene structure and evidence for its stimulatory role in food intake,” Endocrinology, vol. 143, no. 10, pp. 4143–4146, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Miura, K. Maruyama, S. I. Shimakura et al., “Neuropeptide Y mediates ghrelin-induced feeding in the goldfish, Carassius auratus,” Neuroscience Letters, vol. 407, no. 3, pp. 279–283, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Tschop, D. L. Smiley, and M. L. Heiman, “Ghrelin induces adiposity in rodents,” Nature, vol. 407, no. 6806, pp. 908–913, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Miura, K. Maruyama, S. I. Shimakura et al., “Regulation of food intake in the goldfish by interaction between ghrelin and orexin,” Peptides, vol. 28, no. 6, pp. 1207–1213, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. L. G. Riley, B. K. Fox, H. Kaiya, T. Hirano, and E. G. Grau, “Long-term treatment of ghrelin stimulates feeding, fat deposition, and alters the GH/IGF-I axis in the tilapia, Oreochromis mossambicus,” General and Comparative Endocrinology, vol. 142, no. 1-2, pp. 234–240, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Date, N. Murakami, M. Kojima et al., “Central effects of a novel acylated peptide, ghrelin, on growth hormone release in rats,” Biochemical and Biophysical Research Communications, vol. 275, no. 2, pp. 477–480, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Jonsson, A. Forsman, I. E. Einarsdottir, H. Kaiya, K. Ruohonen, and B. T. Bjornsson, “Plasma ghrelin levels in rainbow trout in response to fasting, feeding and food composition, and effects of ghrelin on voluntary food intake,” Comparative Biochemistry and Physiology A, vol. 147, no. 4, pp. 1116–1124, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Broglio, E. Arvat, A. Benso et al., “Ghrelin, a natural gh secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 10, pp. 5083–5086, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. T. W. Moon, “Glucose intolerance in teleost fish: fact or fiction?” Comparative Biochemistry and Physiology B, vol. 129, no. 2-3, pp. 243–249, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Gnanapavan, B. Kola, S. A. Bustin et al., “The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 6, pp. 2988–2991, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. C.-B. Chan and C. H. K. Cheng, “Identification and functional characterization of two alternatively spliced growth hormone secretagogue receptor transcripts from the pituitary of black seabream Acanthopagrus schlegeli,” Molecular and Cellular Endocrinology, vol. 214, no. 1-2, pp. 81–95, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. A. J. van der Lely, M. Tschop, M. L. Heiman, and E. Ghigo, “Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin,” Endocrine Reviews, vol. 25, no. 3, pp. 426–457, 2004. View at Publisher · View at Google Scholar · View at Scopus