Table of Contents
International Journal of Peptides
Volume 2010, Article ID 365416, 10 pages
http://dx.doi.org/10.1155/2010/365416
Research Article

Reconstruction-Dependent Recovery from Anorexia and Time-Related Recovery of Regulatory Ghrelin System in Gastrectomized Rats

1Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
2Department of Surgery, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
3Department of Biochemistry, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
4Division of Organ Replacement Research, Center for Molecular Medicine, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
5Department of Surgery, Ibaraki Prefectural Central Hospital, Koibuchi 6528, Kasama, Ibaraki 309-1793, Japan

Received 20 August 2009; Accepted 12 November 2009

Academic Editor: Akio Inui

Copyright © 2010 Masaru Koizumi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, and K. Kangawa, “Ghrelin is a growth-hormone-releasing acylated peptide from stomach,” Nature, vol. 402, no. 6762, pp. 656–660, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Date, M. Kojima, H. Hosoda et al., “Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans,” Endocrinology, vol. 141, no. 11, pp. 4255–4261, 2000. View at Google Scholar · View at Scopus
  3. H. Hosoda, M. Kojima, H. Matsuo, and K. Kangawa, “Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue,” Biochemical and Biophysical Research Communications, vol. 279, no. 3, pp. 909–913, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Dornonville de la Cour, M. Björkqvist, A. K. Sandvik et al., “A-like cells in the rat stomach contain ghrelin and do not operate under gastrin control,” Regulatory Peptides, vol. 99, no. 2-3, pp. 141–150, 2001. View at Google Scholar
  5. S. Lu, J.-L. Guan, Q.-P. Wang et al., “Immunocytochemical observation of ghrelin-containing neurons in the rat arcuate nucleus,” Neuroscience Letters, vol. 321, no. 3, pp. 157–160, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Rindi, V. Necchi, A. Savio et al., “Characterisation of gastric ghrelin cells in man and other mammals: studies in adult and fetal tissues,” Histochemistry and Cell Biology, vol. 117, no. 6, pp. 511–519, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. Cowley, R. G. Smith, S. Diano et al., “The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis,” Neuron, vol. 37, no. 4, pp. 649–661, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Dezaki, H. Hosoda, M. Kakei et al., “Endogenous ghrelin in pancreatic islets restricts insulin release by attenuating Ca2+ signaling in ß-cells: implication in the glycemic control in rodents,” Diabetes, vol. 53, no. 12, pp. 3142–3151, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Kojima and K. Kangawa, “Ghrelin: structure and function,” Physiological Reviews, vol. 85, no. 2, pp. 495–522, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. J. A. Gutierrez, P. J. Solenberg, D. R. Perkins et al., “Ghrelin octanoylation mediated by an orphan lipid transferase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 17, pp. 6320–6325, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Yang, M. S. Brown, G. Liang, N. V. Grishin, and J. L. Goldstein, “Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone,” Cell, vol. 132, no. 3, pp. 387–396, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Asakawa, A. Inui, M. Fujimiya et al., “Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin,” Gut, vol. 54, no. 1, pp. 18–24, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Tschop, D. L. Smiley, and M. L. Heiman, “Ghrelin induces adiposity in rodents,” Nature, vol. 407, no. 6806, pp. 908–913, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. A. M. Wren, C. J. Small, H. L. Ward et al., “The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion,” Endocrinology, vol. 141, no. 11, pp. 4325–4328, 2000. View at Google Scholar · View at Scopus
  15. A. Asakawa, A. Inui, T. Kaga et al., “Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin,” Gastroenterology, vol. 120, no. 2, pp. 337–345, 2001. View at Google Scholar · View at Scopus
  16. J. Kamegai, H. Tamura, T. Shimizu, S. Ishii, H. Sugihara, and I. Wakabayashi, “Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and agouti-related protein mRNA levels and body weight in rats,” Diabetes, vol. 50, no. 7–12, pp. 2438–2443, 2001. View at Google Scholar · View at Scopus
  17. M. Nakazato, N. Murakami, Y. Date et al., “A role for ghrelin in the central regulation of feeding,” Nature, vol. 409, no. 6817, pp. 194–198, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. A. M. Wren, C. J. Small, C. R. Abbott et al., “Ghrelin causes hyperphagia and obesity in rats,” Diabetes, vol. 50, no. 7–12, pp. 2540–2547, 2001. View at Google Scholar · View at Scopus
  19. M. Shintani, Y. Ogawa, K. Ebihara et al., “Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway,” Diabetes, vol. 50, no. 2, pp. 227–232, 2001. View at Google Scholar · View at Scopus
  20. D. Kohno, H.-Z. Gao, S. Muroya, S. Kikuyama, and T. Yada, “Ghrelin directly interacts with neuropeptide-Y-containing neurons in the rat arcuate nucleus: Ca2+ signaling via protein kinase A and N-type channel-dependent mechanisms and cross-talk with leptin and orexin,” Diabetes, vol. 52, no. 4, pp. 948–956, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Kohno, M. Nakata, F. Maekawa et al., “Leptin suppresses ghrelin-induced activation of neuropeptide Y neurons in the arcuate nucleus via phosphatidylinositol 3-kinase- and phosphodiesterase 3-mediated pathway,” Endocrinology, vol. 148, no. 5, pp. 2251–2263, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. A. M. Wren and S. R. Bloom, “Gut hormones and appetite control,” Gastroenterology, vol. 132, no. 6, pp. 2116–2130, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Sun, S. Ahmed, and R. G. Smith, “Deletion of ghrelin impairs neither growth nor appetite,” Molecular and Cellular Biology, vol. 23, no. 22, pp. 7973–7981, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Sun, P. Wang, H. Zheng, and R. G. Smith, “Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 13, pp. 4679–4684, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. K. E. Wortley, K. D. Anderson, K. Garcia et al., “Genetic deletion of ghrelin does decrease food intake but influences metabolic fuel preference,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 21, pp. 8227–8232, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Liedman, H. Andersson, I. Bosaeus, I. Hugosson, and L. Lundell, “Changes in body composition after gastrectomy: results of a controlled, prospective clinical trial,” World Journal of Surgery, vol. 21, no. 4, pp. 416–421, 1997. View at Google Scholar · View at Scopus
  27. B. Liedman, “Symptoms after total gastrectomy on food intake, body composition, bone metabolism, and quality of life in gastric cancer patients—is reconstruction with a reservoir worthwhile?” Nutrition, vol. 15, no. 9, pp. 677–682, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Ariyasu, K. Takaya, T. Tagami et al., “Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans,” The Journal of Clinical Endocrinology & Metabolism, vol. 86, no. 10, pp. 4753–4758, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Takachi, Y. Doki, O. Ishikawa et al., “Postoperative ghrelin levels and delayed recovery from body weight loss after distal or total gastrectomy,” Journal of Surgical Research, vol. 130, no. 1, pp. 1–7, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Ueno, H. Yamaguchi, K. Kangawa, and M. Nakazato, “Ghrelin: a gastric peptide that regulates food intake and energy homeostasis,” Regulatory Peptides, vol. 126, no. 1-2, pp. 11–19, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Dornonville de la Cour, A. Lindqvist, E. Egecioglu et al., “Ghrelin treatment reverses the reduction in weight gain and body fat in gastrectomized mice,” Gut, vol. 54, no. 7, pp. 907–913, 2005. View at Google Scholar
  32. H.-T. Wang, Q.-C. Lu, Q. Wang et al., “Role of the doudenum in regulation of plasma ghrelin levels and body mass index after subtotal gastrectomy,” World Journal of Gastroenterology, vol. 14, no. 15, pp. 2425–2429, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Dezaki, H. Sone, M. Koizumi et al., “Blockade of pancreatic islet-derived ghrelin enhances insulin secretion to prevent high-fat diet-induced glucose intolerance,” Diabetes, vol. 55, no. 12, pp. 3486–3493, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Yada, K. Dezaki, H. Sone et al., “Ghrelin regulates insulin release and glycemia: physiological role and therapeutic potential,” Current Diabetes Reviews, vol. 4, no. 1, pp. 18–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Date, N. Murakami, K. Toshinai et al., “The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats,” Gastroenterology, vol. 123, no. 4, pp. 1120–1128, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. V. Popovic, D. Miljic, S. Pekic et al., “Low plasma ghrelin level in gastrectomized patients is accompanied by enhanced sensitivity to the ghrelin-induced growth hormone release,” The Journal of Clinical Endocrinology & Metabolism, vol. 90, no. 4, pp. 2187–2191, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Matsuzawa, “Therapy insight: adipocytokines in metabolic syndrome and related cardiovascular disease,” Nature Clinical Practice Cardiovascular Medicine, vol. 3, no. 1, pp. 35–42, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. D. E. Cummings, D. S. Weigle, R. S. Frayo et al., “Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery,” The New England Journal of Medicine, vol. 346, no. 21, pp. 1623–1630, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Garcia-Fuentes, L. Garrido-Sanchez, J. M. Garcia-Almeida et al., “Different effect of laparoscopic Roux-en-Y gastric bypass and open biliopancreatic diversion of Scopinaro on serum PYY and ghrelin levels,” Obesity Surgery, vol. 18, no. 11, pp. 1424–1429, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Ybarra, E. Bobbioni-Harsch, G. Chassot et al., “Persistent correlation of ghrelin plasma levels with body mass index both in stable weight conditions and during gastric-bypass-induced weight loss,” Obesity Surgery, vol. 19, no. 3, pp. 327–331, 2009. View at Publisher · View at Google Scholar · View at Scopus