Table of Contents
International Journal of Peptides
Volume 2010, Article ID 820794, 6 pages
http://dx.doi.org/10.1155/2010/820794
Review Article

The Roles of Motilin and Ghrelin in Gastrointestinal Motility

Department of General Surgical Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan

Received 24 September 2009; Accepted 12 November 2009

Academic Editor: Akio Inui

Copyright © 2010 Tetsuro Ohno et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Hosoda, M. Kojima, H. Matsuo, and K. Kangawa, “Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue,” Biochemical and Biophysical Research Communications, vol. 279, no. 3, pp. 909–913, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. G. Wang, H.-M. Lee, E. Englander, and G. H. Greeley Jr., “Ghrelin—not just another stomach hormone,” Regulatory Peptides, vol. 105, no. 2, pp. 75–81, 2002. View at Google Scholar · View at Scopus
  3. M. Kojima, H. Hosoda, and K. Kangawa, “Purification and distribution of ghrelin: the natural endogenous ligand for the growth hormone secretagogue receptor,” Hormone Research, vol. 56, supplement 1, pp. 93–97, 2001. View at Google Scholar · View at Scopus
  4. Y. Date, M. Kojima, H. Hosoda et al., “Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans,” Endocrinology, vol. 141, no. 11, pp. 4255–4261, 2000. View at Google Scholar · View at Scopus
  5. M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, and K. Kangawa, “Ghrelin is a growth-hormone-releasing acylated peptide from stomach,” Nature, vol. 402, no. 6762, pp. 656–660, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. E. Arvat, L. Di Vito, F. Broglio et al., “Preliminary evidence that Ghrelin, the natural GH secretagogue (GHS)-receptor ligand, strongly stimulates GH secretion in humans,” Journal of Endocrinological Investigation, vol. 23, no. 8, pp. 493–495, 2000. View at Google Scholar · View at Scopus
  7. R. Peino, R. Baldelli, J. Rodriguez-Garcia et al., “Ghrelin-induced growth hormone secretion in humans,” European Journal of Endocrinology, vol. 143, no. 6, pp. R11–R14, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Takaya, H. Ariyasu, N. Kanamoto et al., “Ghrelin strongly stimulates growth hormone (GH) release in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 12, pp. 4908–4911, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. L. M. Seoane, S. Tovar, R. Baldelli et al., “Ghrelin elicits a marked stimulatory effect on GH secretion in freely-moving rats,” European Journal of Endocrinology, vol. 143, no. 5, pp. R7–R9, 2000. View at Google Scholar · View at Scopus
  10. V. Tolle, P. Zizzari, C. Tomasetto, M.-C. Rio, J. Epelbaum, and M.-T. Bluet-Pajot, “In vivo and in vitro effects of ghrelin/motilin-related peptide on growth hormone secretion in the rat,” Neuroendocrinology, vol. 73, no. 1, pp. 54–61, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Broglio, E. Arvat, A. Benso et al., “Ghrelin, a natural GH secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 10, pp. 5083–5086, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. M. K. Reimer, G. Pacini, and B. Ahren, “Dose-dependent inhibition by ghrelin of insulin secretion in the mouse,” Endocrinology, vol. 144, no. 3, pp. 916–921, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Bedendi, G. Alloatti, A. Marcantoni et al., “Cardiac effects of ghrelin and its endogenous derivatives des-octanoyl ghrelin and des-Gln14-ghrelin,” European Journal of Pharmacology, vol. 476, no. 1-2, pp. 87–95, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Nagaya and K. Kangawa, “Ghrelin, a novel growth hormone-releasing peptide, in the treatment of chronic heart failure,” Regulatory Peptides, vol. 114, no. 2-3, pp. 71–77, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Asakawa, A. Inui, T. Kaga et al., “Antagonism of ghrelin receptor reduces food intake and body weight gain in mice,” Gut, vol. 52, no. 7, pp. 947–952, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. A. M. Wren, L. J. Seal, M. A. Cohen et al., “Ghrelin enhances appetite and increases food intake in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 12, pp. 5992–5995, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Poitras and T. L. Peeters, “Motilin,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 15, no. 1, pp. 54–57, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. Z. Itoh, “Motilin and clinical application,” Peptides, vol. 18, no. 4, pp. 593–608, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Masuda, T. Tanaka, N. Inomata et al., “Ghrelin stimulates gastric acid secretion and motility in rats,” Biochemical and Biophysical Research Communications, vol. 276, no. 3, pp. 905–908, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. K. Fujino, A. Inui, A. Asakawa, N. Kihara, M. Fujimura, and M. Fujimiya, “Ghrelin induces fasted motor activity of the gastrointestinal tract in conscious fed rats,” Journal of Physiology, vol. 550, no. 1, pp. 227–240, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. J. Tack, I. Depoortere, R. Bisschops et al., “Influence of ghrelin on interdigestive gastrointestinal motility in humans,” Gut, vol. 55, no. 3, pp. 327–333, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. T. Kitazawa, B. De Smet, K. Verbeke, I. Depoortere, and T. L. Peeters, “Gastric motor effects of peptide and non-peptide ghrelin agonists in mice in vivo and in vitro,” Gut, vol. 54, no. 8, pp. 1078–1084, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. G. Vantrappen, J. Janssens, T. L. Peeters, S. R. Bloom, N. D. Christofides, and J. Hellemans, “Motilin and the interdigestive migrating motor complexes in man,” Digestive Diseases and Sciences, vol. 24, no. 7, pp. 497–500, 1979. View at Google Scholar · View at Scopus
  24. W. K. Samson, M. D. Lumpkin, G. Nilaver, and S. M. McCann, “Motilin: a novel growth hormone releasing agent,” Brain Research Bulletin, vol. 12, no. 1, pp. 57–62, 1984. View at Publisher · View at Google Scholar · View at Scopus
  25. T. L. Peeters, “Central and peripheral mechanisms by which ghrelin regulates gut motility,” Journal of Physiology and Pharmacology, vol. 54, supplement 4, pp. 95–103, 2003. View at Google Scholar · View at Scopus
  26. H. Ariga, K. Tsukamoto, C. Chen, C. Mantyh, T. N. Pappas, and T. Takahashi, “Endogenous acyl ghrelin is involved in mediating spontaneous phase III-like contractions of the rat stomach,” Neurogastroenterology & Motility, vol. 19, no. 8, pp. 675–680, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. J. Zheng, H. Ariga, H. Taniguchi, K. Ludwig, and T. Takahashi, “Ghrelin regulates gastric phase III-like contractions in freely moving conscious mice,” Neurogastroenterology & Motility, vol. 21, no. 1, pp. 78–84, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. T. Ohno, Y. Kamiyama, R. Aihara et al., “Ghrelin does not stimulate gastrointestinal motility and gastric emptying: an experimental study of conscious dogs,” Neurogastroenterology & Motility, vol. 18, no. 2, pp. 129–135, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. J. Hill, P. Szekeres, A. Muir, and G. J. Sanger, “Molecular, functional and cross-species comparisons between the receptors for the prokinetic neuropeptides, motilin and ghrelin,” Gastroenterology, vol. 122, supplement 1, p. A54, 2002. View at Google Scholar
  30. J. Aerssens, I. Depoortere, L. Thielemans, A. Mitselos, B. Coulie, and T. L. Peeters, “The rat lacks functional genes for motilin and the motilin receptor,” Neurogastroenterology & Motility, vol. 16, p. 841, 2004. View at Google Scholar
  31. J. H. Szurszewski, “A migrating electric complex of canine small intestine,” The American Journal of Physiology, vol. 217, no. 6, pp. 1757–1763, 1969. View at Google Scholar · View at Scopus
  32. Z. Itoh, I. Aizawa, S. Takeuchi, and E. F. Couch, “Hunger contractions and motilin,” in Proceedings of the 5th International Symposium on Gastrointestinal Motility, G. Vantrappen, Ed., pp. 48–55, Herentals, Belgium, 1975.
  33. Z. Itoh, R. Honda, K. Hiwatashi et al., “Motilin induced mechanical activity in the canine alimentary tract,” Scandinavian Journal of Gastroenterology, vol. 11, supplement 39, pp. 93–110, 1976. View at Google Scholar · View at Scopus
  34. T. L. Peeters, G. Vantrappen, and J. Janssens, “Fasting plasma motilin levels are related to the interdigestive motility complex,” Gastroenterology, vol. 79, no. 4, pp. 716–719, 1980. View at Google Scholar · View at Scopus
  35. K. Y. Lee, T. M. Chang, and W. Y. Chey, “Effect of rabbit antimotilin serum on myoelectric activity and plasma motilin concentration in fasting dog,” The American Journal of Physiology, vol. 245, no. 4, pp. G547–G553, 1983. View at Google Scholar · View at Scopus
  36. Z. Itoh, A. Mizumoto, Y. Iwanaga, N. Yoshida, K. Torii, and K. Wakabayashi, “Involvement of 5-hydroxytryptamine 3 receptors in regulation of interdigestive gastric contractions by motilin in the dog,” Gastroenterology, vol. 100, no. 4, pp. 901–908, 1991. View at Google Scholar · View at Scopus
  37. U. Strunz, W. Domschke, P. Mitznegg et al., “Analysis of the motor effects of 13 norleucine motilin on the rabbit, guinea pig, rat, and human alimentary tract in vitro,” Gastroenterology, vol. 68, no. 6, pp. 1485–1491, 1975. View at Google Scholar · View at Scopus
  38. H. Adachi, N. Toda, S. Hayashi et al., “Mechanism of the excitatory action of motilin on isolated rabbit intestine,” Gastroenterology, vol. 80, no. 4, pp. 783–788, 1981. View at Google Scholar · View at Scopus
  39. F. E. Lüdtke, H. Müller, and K. Golenhofen, “Direct effects of motilin on isolated smooth muscle from various regions of the human stomach,” Pflugers Archiv European Journal of Physiology, vol. 414, no. 5, pp. 558–563, 1989. View at Google Scholar · View at Scopus
  40. K. Kudoh, C. Shibata, Y. Funayama et al., “The effect of growth hormone releasing peptide-2 on upper gastrointestinal contractile activity and food intake in conscious dogs,” Journal of Gastroenterology, vol. 44, no. 4, pp. 297–304, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. Z. Itoh, M. Nakaya, T. Suzuki, H. Arai, and K. Wakabayashi, “Erythromycin mimics exogenous motilin in gastrointestinal contractile activity in the dog,” The American Journal of Physiology, vol. 247, no. 6, pp. G688–G694, 1984. View at Google Scholar · View at Scopus
  42. T. Tomomasa, T. Kuroume, and H. Arai, “Erythromycin induces migrating motor complex in human gastrointestinal tract,” Digestive Diseases and Sciences, vol. 31, no. 2, pp. 157–161, 1986. View at Google Scholar · View at Scopus
  43. J. Tack, J. Janssens, G. Vantrappen et al., “Effect of erythromycin on gastric motility in controls and in diabetic gastroparesis,” Gastroenterology, vol. 103, no. 1, pp. 72–79, 1992. View at Google Scholar · View at Scopus
  44. Z. Itoh and S. Omura, “Motilide a new family of macrolide compounds mimicking motilin,” Digestive Diseases and Sciences, vol. 32, pp. 915–920, 1987. View at Google Scholar
  45. N. J. Talley, M. Verlinden, W. Snape et al., “Failure of a motilin receptor agonist (ABT-229) to relieve the symptoms of functional dyspepsia in patients with and without delayed gastric emptying: a randomized double-blind placebo-controlled trial,” Alimentary Pharmacology and Therapeutics, vol. 14, no. 12, pp. 1653–1661, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. N. J. Talley, M. Verlinden, D. J. Geenen et al., “Effects of a motilin receptor agonist (ABT-229) on upper gastrointestinal symptoms in type 1 diabetes mellitus: a randomised, double blind, placebo controlled trial,” Gut, vol. 49, no. 3, pp. 395–401, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Thielemans, I. Depoortere, J. Perret et al., “Desensitization of the human motilin receptor by motilides,” Journal of Pharmacology and Experimental Therapeutics, vol. 313, no. 3, pp. 1397–1405, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. J. Tack, H. Piessevaux, B. Coulie, P. Caenepeel, and J. Janssens, “Role of impaired gastric accommodation to a meal in functional dyspepsia,” Gastroenterology, vol. 115, no. 6, pp. 1346–1352, 1998. View at Google Scholar · View at Scopus
  49. I. M. C. Kamerling, A. D. van Haarst, J. Burggraaf et al., “Exogenous motilin affects postprandial proximal gastric motor function and visceral sensation,” Digestive Diseases and Sciences, vol. 47, no. 8, pp. 1732–1736, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Cuomo, P. Vandaele, B. Coulie et al., “Influence of motilin on gastric fundus tone and on meal-induced satiety in man: role of cholinergic pathways,” American Journal of Gastroenterology, vol. 101, no. 4, pp. 804–811, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. R. W. McCallum, O. Cynshi, T. Abell et al., “Efficacy of mitemcinal, a motilin agonist, on gastrointestinal symptoms in patients with symptoms suggesting diabetic gastropathy: a randomized, multi-center, placebo-controlled trial,” Alimentary Pharmacology and Therapeutics, vol. 26, no. 1, pp. 107–116, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. J. Tack and T. L. Peeters, “What comes after macrolides and other motilin stimulants?” Gut, vol. 49, no. 3, pp. 317–318, 2001. View at Google Scholar · View at Scopus
  53. H. Takanashi, K. Yogo, K.-I. Ozaki, H. Koga, Z. Itoh, and S. Omura, “In vitro pharmacological characterization of mitemcinal (GM-611), the first acid-resistant non-peptide motilin receptor agonist, in smooth muscle of rabbit small intestine,” Pharmacology, vol. 79, no. 3, pp. 137–148, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. K.-I. Ozaki, K. Yogo, H. Sudo et al., “Effects of mitemcinal (GM-611), an acid-resistant nonpeptide motilin receptor agonist, on the gastrointestinal contractile activity in conscious dogs,” Pharmacology, vol. 79, no. 4, pp. 223–235, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. K. Ozaki, H. Sudo, H. Muramatsu et al., “Mitemcinal (GM-611), an orally active motilin receptor agonist, accelerates colonic motility and bowel movement in conscious dogs,” Inflammopharmacology, vol. 15, no. 1, pp. 36–42, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. R. W. McCallum, O. Cynshi, and US Investigative Team, “Efficacy of mitemcinal, a motilin agonist, on gastrointestinal symptoms in patients with symptoms suggesting diabetic gastropathy: a randomized, multi-center, placebo-controlled trial,” Alimentary Pharmacology and Therapeutics, vol. 26, no. 1, pp. 107–116, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. L. Trudel, C. Tomasetto, M. C. Rio et al., “Ghrelin/motilin-related peptide is a potent prokinetic to reverse gastric postoperative ileus in rat,” American Journal of Physiology, vol. 282, no. 6, pp. G948–G952, 2002. View at Google Scholar · View at Scopus
  58. P. Poitras, W. J. Polvino, and B. Rocheleau, “Gastrokinetic effect of ghrelin analog RC-1139 in the rat: effect on post-operative and on morphine induced ileus,” Peptides, vol. 26, no. 9, pp. 1598–1601, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. L. Trudel, M. Bouin, C. Tomasetto et al., “Two new peptides to improve post-operative gastric ileus in dog,” Peptides, vol. 24, no. 4, pp. 531–534, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Binn, C. Albert, A. Gougeon et al., “Ghrelin gastrokinetic action in patients with neurogenic gastroparesis,” Peptides, vol. 27, no. 7, pp. 1603–1606, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. J. Tack, I. Depoortere, R. Bisschops, K. Verbeke, J. Janssens, and T. Peeters, “Influence of ghrelin on gastric emptying and meal-related symptoms in idiopathic gastroparesis,” Alimentary Pharmacology and Therapeutics, vol. 22, no. 9, pp. 847–853, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. K. Venkova, G. Fraser, H. R. Hoveyda, and B. Greenwood-Van Meerveld, “Prokinetic effects of a new ghrelin receptor agonist TZP-101 in a rat model of postoperative ileus,” Digestive Diseases and Sciences, vol. 52, no. 9, pp. 2241–2248, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. K. C. Lasseter, L. Shaughnessy, D. Cummings et al., “Ghrelin agonist (TZP-101): safety, pharmacokinetics and pharmacodynamic evaluation in healthy volunteers: a phase I, first-in-human study,” Journal of Clinical Pharmacology, vol. 48, no. 2, pp. 193–202, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. P. Poitras and C. Tomasetto, “The potential of ghrelin as a prokinetic,” Regulatory Peptides, vol. 155, no. 1–3, pp. 24–27, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus