Table of Contents
International Journal of Proteomics
Volume 2011 (2011), Article ID 215496, 13 pages
http://dx.doi.org/10.1155/2011/215496
Research Article

Signatures of Drug Sensitivity in Nonsmall Cell Lung Cancer

1Department of Research and Development, Prometheus Inc. 9410, Carroll Park Drive, San Diego, CA 92121, USA
2Department of Surgery, School of Medicine, University of Michigan, 6304 Cancer Center, Ann Arbor, MI 48109, USA
3Cancer Center, University of Michigan, Room 6304, Ann Arbor, MI 48109, USA

Received 27 April 2011; Accepted 1 June 2011

Academic Editor: David E. Misek

Copyright © 2011 Hua C. Gong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer Journal for Clinicians, vol. 61, pp. 69–90, 2011. View at Google Scholar
  2. A. A. Vaporciyan, J. C. Nesbitt, J. S. Lee et al., Holland-Frei Cancer Medicine, BC Decker, 5th edition, 2000.
  3. V. L. Roggli, R. T. Vollmer, S. D. Greenberg, M. H. McGavran, H. J. Spjut, and R. Yesner, “Lung cancer heterogeneity: a blinded and randomized study of 100 consecutive cases,” Human Pathology, vol. 16, no. 6, pp. 569–579, 1985. View at Google Scholar
  4. J. H. Schiller, D. Harrington, C. P. Belani et al., “Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer,” The New England Journal of Medicine, vol. 346, no. 2, pp. 92–98, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. R. L. Comis, “The current situation: erlotinib (Tarceva) and gefitinib (Iressa) in non-small cell lung cancer,” The Oncologist, vol. 10, no. 7, pp. 467–470, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. S. Ramalingam and A. B. Sandler, “Salvage therapy for advanced non-small cell lung cancer: factors influencing treatment selection,” The Oncologist, vol. 11, no. 6, pp. 655–665, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. G. S. Papaetis and K. N. Syrigos, “Sunitinib: a multitargeted receptor tyrosine kinase inhibitor in the era of molecular cancer therapies,” BioDrugs, vol. 23, no. 6, pp. 377–389, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. J. W. Neal and L. V. Sequist, “Exciting new targets in lung cancer therapy: ALK, IGF-1R, HDAC, and Hh,” Current Treatment Options in Oncology, vol. 11, no. 1-2, pp. 36–44, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. V. Serra, M. Scaltriti, L. Prudkin et al., “PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer,” Oncogene, vol. 30, no. 22, pp. 2547–2557, 2011. View at Publisher · View at Google Scholar · View at PubMed
  10. H. C. Gong, Y. Honjo, P. Nangia-Makker et al., “The NH2 terminus of galectin-3 governs cellular compartmentalization and functions in cancer cells,” Cancer Research, vol. 59, no. 24, pp. 6239–6245, 1999. View at Google Scholar
  11. W. Pao, V. A. Miller, K. A. Politi et al., “Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the HER1 kinase domain,” PLoS Medicine, vol. 2, no. 3, pp. 225–235, 2005. View at Publisher · View at Google Scholar · View at PubMed
  12. F. Le Calvez, A. Mukeria, J. D. Hunt et al., “TP53 and KRAS mutation load and types in lung cancers in relation to tobacco smoke: distinct patterns in never, former, and current smokers,” Cancer Research, vol. 65, no. 12, pp. 5076–5083, 2005. View at Publisher · View at Google Scholar · View at PubMed
  13. W. Pao, T. Y. Wang, G. J. Riely et al., “KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib,” PLoS Medicine, vol. 2, no. 1, pp. 57–61, 2005. View at Publisher · View at Google Scholar · View at PubMed
  14. T. Sjöblom, S. Jones, L. D. Wood et al., “The consensus coding sequences of human breast and colorectal cancers,” Science, vol. 314, no. 5797, pp. 268–274, 2006. View at Publisher · View at Google Scholar · View at PubMed
  15. A. Potti, H. K. Dressman, A. Bild et al., “Genomic signatures to guide the use of chemotherapeutics,” Nature Medicine, vol. 12, no. 11, pp. 1294–1300, 2006. View at Publisher · View at Google Scholar · View at PubMed
  16. W. Pao, V. Miller, M. Zakowski et al., “EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 36, pp. 13306–13311, 2004. View at Publisher · View at Google Scholar · View at PubMed
  17. T. J. Lynch, D. W. Bell, R. Sordella et al., “Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib,” The New England Journal of Medicine, vol. 350, no. 21, pp. 2129–2139, 2004. View at Publisher · View at Google Scholar · View at PubMed
  18. E. L. Kwak, R. Sordella, D. W. Bell et al., “Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 21, pp. 7665–7670, 2005. View at Publisher · View at Google Scholar · View at PubMed
  19. J. G. Paez, P. A. Jänne, J. C. Lee et al., “HER1 mutations in lung cancer: correlation with clinical response to gefitinib therapy,” Science, vol. 304, no. 5676, pp. 1497–1500, 2004. View at Publisher · View at Google Scholar · View at PubMed
  20. S. Kobayashi, T. J. Boggon, T. Dayaram et al., “HER1 mutation and resistance of non-small-cell lung cancer to gefitinib,” The New England Journal of Medicine, vol. 352, no. 8, pp. 786–792, 2005. View at Publisher · View at Google Scholar · View at PubMed
  21. J. S. Sebolt-Leopold, “Advances in the development of cancer therapeutics directed against the RAS-mitogen-activated protein kinase pathway,” Clinical Cancer Research, vol. 14, no. 12, pp. 3651–3656, 2008. View at Publisher · View at Google Scholar · View at PubMed
  22. D. W. Rusnak, K. J. Alligood, R. J. Mullin et al., “Assessment of epidermal growth factor receptor (HER1, ErbB1) and HER2 (ErbB2) protein expression levels and response to lapatinib (Tykerb, GW572016) in an expanded panel of human normal and tumour cell lines,” Cell Proliferation, vol. 40, no. 4, pp. 580–594, 2007. View at Publisher · View at Google Scholar · View at PubMed
  23. K. D. Paull, R. H. Shoemaker, L. Hodes et al., “Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm,” Journal of the National Cancer Institute, vol. 81, no. 14, pp. 1088–1092, 1989. View at Google Scholar
  24. U. McDermott, S. V. Sharma, L. Dowell et al., “Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 50, pp. 19936–19941, 2007. View at Publisher · View at Google Scholar · View at PubMed
  25. N. Nakatsu, T. Nakamura, K. Yamazaki et al., “Evaluation of action mechanisms of toxic chemicals using JFCR39, a panel of human cancer cell lines,” Molecular Pharmacology, vol. 72, no. 5, pp. 1171–1180, 2007. View at Publisher · View at Google Scholar · View at PubMed
  26. S. Singh, X. Liu, T. Lee et al., “Analysis of truncated HER2 expression and activation in breast cancer,” Journal of Clinical Oncology, ASCO Annual Meeting, vol. 28, no. 15, p. 1099, 2010. View at Google Scholar