Table of Contents
International Journal of Proteomics
Volume 2011, Article ID 502845, 8 pages
http://dx.doi.org/10.1155/2011/502845
Research Article

Adsorption of Urinary Proteins on the Conventionally Used Urine Collection Tubes: Possible Effects on Urinary Proteome Analysis and Prevention of the Adsorption by Polymer Coating

1Clinical Proteomics Research Center, Chiba University Hospital, Chiba, Japan
2R&D Department, Nittobo Medical Co., Ltd., Fukushima, Koriyama City 963-8061, Japan
3Department of Clinical Laboratory, Chiba University Hospital, Chiba, Japan
4Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan

Received 1 June 2011; Accepted 5 July 2011

Academic Editor: David E. Misek

Copyright © 2011 Iwao Kiyokawa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. R. Vaezzadeh, H. Steen, M. R. Freeman, and R. S. Lee, “Proteomics and opportunities for clinical translation in urological disease,” Journal of Urology, vol. 182, no. 3, pp. 835–843, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Decramer, A. G. de Peredo, B. Breuil et al., “Urine in clinical proteomics,” Molecular and Cellular Proteomics, vol. 7, no. 10, pp. 1850–1862, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Schaub, D. Rush, J. Wilkins et al., “Proteomic-based detection of urine proteins associated with acute renal allograft rejection,” Journal of the American Society of Nephrology, vol. 15, no. 1, pp. 219–227, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Vlahou, P. F. Schellhammer, S. Mendrinos et al., “Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine,” American Journal of Pathology, vol. 158, no. 4, pp. 1491–1502, 2001. View at Google Scholar · View at Scopus
  5. K. Rossing, H. Mischak, M. Dakna et al., “Urinary proteomics in diabetes and CKD,” Journal of the American Society of Nephrology, vol. 19, no. 7, pp. 1283–1290, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Theodorescu, D. Fliser, S. Wittke et al., “Pilot study of capillary electrophoresis coupled to mass spectrometry as a tool to define potential prostate cancer biomarkers in urine,” Electrophoresis, vol. 26, no. 14, pp. 2797–2808, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Z. Von Muhlen, E. Schiffer, P. Zuerblg et al., “Evaluation of urine proteome pattern analysis for its potential to reflect coronary artery atherosclerosis in symptomatic patients,” Journal of Proteome Research, vol. 8, no. 1, pp. 335–345, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Ye, S. Skates, S. C. Mok et al., “Proteomic-based discovery and characterization of glycosylated eosinophil-derived neurotoxin and COOH-terminal osteopontin fragments for ovarian cancer in urine,” Clinical Cancer Research, vol. 12, no. 2, pp. 432–441, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Pisitkun, R. Johnstone, and M. A. Knepper, “Discovery of urinary biomarkers,” Molecular and Cellular Proteomics, vol. 5, no. 10, pp. 1760–1771, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. V. Thongboonkerd, “Urinary proteomics: towards biomarker discovery, diagnostics and prognostics,” Molecular BioSystems, vol. 4, no. 8, pp. 810–815, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Thongboonkerd, S. Chutipongtanate, and R. Kanlaya, “Systematic evaluation of sample preparation methods for gel-based human urinary proteomics: quantity, quality, and variability,” Journal of Proteome Research, vol. 5, no. 1, pp. 183–191, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Thongboonkerd, “Practical points in urinary proteomics,” Journal of Proteome Research, vol. 6, no. 10, pp. 3881–3890, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Schaub, J. Wilkins, T. Weiler, K. Sangster, D. Rush, and P. Nickerson, “Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry,” Kidney International, vol. 65, no. 1, pp. 323–332, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Afkarian, M. Bhasin, S. T. Dillon et al., “Optimizing a proteomics platform for urine biomarker discovery,” Molecular and Cellular Proteomics, vol. 9, no. 10, pp. 2195–2204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Ishihara, R. Aragaki, T. Ueda, A. Watenabe, and N. Nakabayashi, “Reduced thrombogenicity of polymers having phospholipid polar groups,” Journal of Biomedical Materials Research, vol. 24, no. 8, pp. 1069–1077, 1990. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Ishihara, H. Nomura, T. Mihara, K. Kurita, Y. Iwasaki, and N. Nakabayashi, “Why do phospholipid polymers reduce protein adsorption?” Journal of Biomedical Materials Research, vol. 39, no. 2, pp. 323–330, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. R. R. Palmer, A. L. Lewis, L. C. Kirkwood et al., “Biological evaluation and drug delivery application of cationically modified phospholipid polymers,” Biomaterials, vol. 25, no. 19, pp. 4785–4796, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Futamura, R. Matsuno, T. Konno, M. Takai, and K. Ishihara, “Rapid development of hydrophilicity and protein adsorption resistance by polymer surfaces bearing phosphorylcholine and naphthalene groups,” Langmuir, vol. 24, no. 18, pp. 10340–10344, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Satoh, E. Haruta-Satoh, A. Omori et al., “Effect of thyroxine on abnormal pancreatic proteomes of the hypothyroid rdw rat,” Proteomics, vol. 5, no. 4, pp. 1113–1124, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Oh-Ishi, M. Satoh, and T. Maeda, “Preparative two-dimensional gel electrophoresis with agarose gels in the first dimension for high molecular mass proteins,” Electrophoresis, vol. 21, no. 9, pp. 1653–1669, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Kawashima, T. Fukuno, M. Satoh et al., “A simple and highly reproducible method for discovering potential disease markers in low abundance serum proteins,” Journal of Electrophoresis, vol. 53, pp. 13–18, 2009. View at Google Scholar
  22. K. Sogawa, Y. Kodera, K. Noda et al., “The measurement of a fibrinogen a C-chain 5.9 kDa fragment (FIC5.9) using MALDI-TOF MS and a stabel isotope-labeled peptide standard dilution,” Clinica Chimica Acta, vol. 412, pp. 1094–1099, 2011. View at Google Scholar
  23. H. Umemura, A. Togawa, K. Sogawa et al., “Identification of a high molecular weight kininogen fragment as a marker for early gastric cancer by serum proteome analysis,” Journal of Gastroenterology, vol. 46, pp. 577–585, 2011. View at Google Scholar
  24. I. Aoike, “Clinical significance of protein adsorbable membranes–long-term clinical effects and analysis using a proteomic technique,” Nephrology, Dialysis, Transplantation, vol. 22, pp. v13–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Kingshott, H. A. W. S. John, R. C. Chatelier, and H. J. Griesser, “Matrix-assisted laser desorption ionization mass spectrometry detection of proteins adsorbed in vivo onto contact lenses,” Journal of Biomedical Materials Research, vol. 49, no. 1, pp. 36–42, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Santos, D. Rodrigues, M. Lira et al., “The influence of surface treatment on hydrophobicity, protein adsorption and microbial colonisation of silicone hydrogel contact lenses,” Contact Lens and Anterior Eye, vol. 30, no. 3, pp. 183–188, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Nishizawa, T. Konno, M. Takai, and K. Ishihara, “Bioconjugated phospholipid polymer biointerface for enzyme-linked immunosorbent assay,” Biomacromolecules, vol. 9, no. 1, pp. 403–407, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Gotoh, K. Uchida, Y. Hamano, S. Mashiba, I. Kawabata, and Y. Itoh, “Evaluation of adsorption of urine cystatin C to the polymer materials on the microplate by an antigen capture enzyme-linked immunosorbent assay,” Clinica Chimica Acta, vol. 397, no. 1-2, pp. 13–17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Malard, J. C. Gaillard, F. Berenguer, N. Sage, and E. Quemeneur, “Urine proteomic profiling of uranium nephrotoxicity,” Biochimica et Biophysica Acta, vol. 1794, pp. 882–891, 2009. View at Google Scholar