Table of Contents
International Journal of Proteomics
Volume 2012 (2012), Article ID 536963, 10 pages
http://dx.doi.org/10.1155/2012/536963
Research Article

Optimization of an Efficient Protein Extraction Protocol Compatible with Two-Dimensional Electrophoresis and Mass Spectrometry from Recalcitrant Phenolic Rich Roots of Chickpea (Cicer arietinum L.)

Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme VII-M, Kankurgachi, West Bengal, Kolkata 700054, India

Received 15 March 2012; Accepted 4 September 2012

Academic Editor: Paul P. Pevsner

Copyright © 2012 Moniya Chatterjee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. K. C. Rose, S. Bashir, J. J. Giovannoni, M. M. Jahn, and R. S. Saravanan, “Tackling the plant proteome: practical approaches, hurdles and experimental tools,” The Plant Journal, vol. 39, no. 5, pp. 715–733, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Gegenheimer, “Preparation of extracts from plants,” Methods in Enzymology, vol. 182, pp. 174–193, 1990. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Tsugita and M. Kamo, “2-D electrophoresis of plant proteins,” Methods in Molecular Biology, vol. 112, pp. 95–97, 1999. View at Google Scholar · View at Scopus
  4. W. Wang, F. Tai, and S. Chen, “Optimizing protein extraction from plant tissues for enhanced proteomics analysis,” Journal of Separation Science, vol. 31, no. 11, pp. 2032–2039, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. R. S. Saravanan and J. K. C. Rose, “A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues,” Proteomics, vol. 4, no. 9, pp. 2522–2532, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Damerval, D. D. Vienne, M. Zivy, and H. Thiellement, “Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins,” Electrophoresis, vol. 7, no. 1, pp. 52–54, 1986. View at Publisher · View at Google Scholar
  7. W. J. Hurkman and C. K. Tanaka, “Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis,” Plant Physiology, vol. 81, no. 3, pp. 802–806, 1986. View at Publisher · View at Google Scholar
  8. Y. Meyer, J. Grosset, Y. Chartier, and J. C. Cleyet-Marel, “Preparation by two-dimensional electrophoresis of proteins for antibody production: antibodies against proteins whose synthesis is reduced by auxin in tobacco mesophyll protoplasts,” Electrophoresis, vol. 9, no. 11, pp. 704–712, 1988. View at Google Scholar · View at Scopus
  9. K. V. Mijnsbrugge, H. Meyermans, M. Van Montagu, G. Bauw, and W. Boerjan, “Wood formation in poplar: identification, characterization, and seasonal variation of xylem proteins,” Planta, vol. 210, no. 4, pp. 589–598, 2000. View at Google Scholar · View at Scopus
  10. W. Wang, M. Scali, R. Vignani et al., “Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds,” Electrophoresis, vol. 24, no. 14, pp. 2369–2375, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Isaacson, C. M. B. Damasceno, R. S. Saravanan et al., “Sample extraction techniques for enhanced proteomic analysis of plant tissues,” Nature Protocols, vol. 1, no. 2, pp. 769–774, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. T. J. Raharjo, I. Widjaja, S. Roytrakul, and R. Verpoorte, “Comparative proteomics of Cannabis sativa plant tissues,” Journal of Biomolecular Techniques, vol. 15, no. 2, pp. 97–106, 2004. View at Google Scholar · View at Scopus
  13. A. M. Schuster and E. Davies, “Ribonucleic acid and protein metabolism in pea epicotyls: II. Response to wounding in aged tissue,” Plant Physiology, vol. 73, no. 3, pp. 817–821, 1983. View at Publisher · View at Google Scholar
  14. S. Gupta, D. Chakraborti, A. Sengupta, D. Basu, and S. Das, “Primary metabolism of chickpea is the initial target of wound inducing early sensed Fusarium oxysporum f. sp. ciceri race I,” PLoS ONE, vol. 5, no. 2, Article ID e9030, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S. C. Carpentier, E. Witters, K. Laukens, P. Deckers, R. Swennen, and B. Panis, “Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis,” Proteomics, vol. 5, no. 10, pp. 2497–2507, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  17. A. Shevchenko, H. Tomas, J. Havliš, J. V. Olsen, and M. Mann, “In-gel digestion for mass spectrometric characterization of proteins and proteomes,” Nature Protocols, vol. 1, no. 6, pp. 2856–2860, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Granier, “Extraction of plant proteins for two-dimensional electrophoresis,” Electrophoresis, vol. 9, no. 11, pp. 712–718, 1988. View at Google Scholar · View at Scopus
  19. C. M. Vâlcu and K. Schlink, “Reduction of proteins during sample preparation and two-dimensional gel electrophoresis of woody plant samples,” Proteomics, vol. 6, no. 5, pp. 1599–1605, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Maurya, U. P. Singh, D. P. Singh, K. P. Singh, and J. S. Srivastava, “Secondary metabolites of chickpea (Cicer arietinum) and their role in pathogenesis after infection by Sclerotium rolfsii,” Journal of Plant Diseases and Protection, vol. 112, no. 2, pp. 118–123, 2005. View at Google Scholar · View at Scopus
  21. M. Chérif, A. Arfaoui, and A. Rhaiem, “Phenolic compounds and their role in bio-control and resistance of chickpea to fungal pathogenic attacks,” Tunisian Journal of Plant Protection, vol. 2, no. 1, pp. 7–21, 2007. View at Google Scholar
  22. W. D. Loomis and J. Battaile, “Plant phenolic compounds and the isolation of plant enzymes,” Phytochemistry, vol. 5, no. 3, pp. 423–438, 1966. View at Publisher · View at Google Scholar · View at Scopus
  23. S. X. Chen and A. C. Harmon, “Advances in plant proteomics,” Proteomics, vol. 6, no. 20, pp. 5504–5516, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. D. F. Hochstrasser, M. G. Harrington, A. C. Hochstrasser, M. J. Miller, and C. R. Merril, “Methods for increasing the resolution of two-dimensional protein electrophoresis,” Analytical Biochemistry, vol. 173, no. 2, pp. 424–435, 1988. View at Google Scholar · View at Scopus
  25. A. Pusztai, “Interactions of proteins with other polyelectrolytes in a two-phase system containing phenol and aqueous buffers at various pH values,” Biochemical Journal, vol. 99, no. 1, pp. 93–101, 1966. View at Google Scholar · View at Scopus
  26. A. Schuster and E. Davies, “Ribonucleic acid and protein metabolism in pea epicotyls II. Response to wounding in aged tissue,” Plant Physiology, vol. 73, no. 3, pp. 817–821, 1983. View at Publisher · View at Google Scholar