Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2011 (2011), Article ID 109693, 11 pages
http://dx.doi.org/10.1155/2011/109693
Research Article

RAFT Synthesis and Self-Assembly of Free-Base Porphyrin Cored Star Polymers

1Department of Colour Science, School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
2Laboratory of Pesticide and Chemical Biology, Ministry of Education, Central China Normal University, Wuhan 430079, China
3Department of Chemistry and Institute of Nanotechnology, University of Waterloo, Waterloo, Canada N2L 3G1

Received 25 March 2011; Accepted 11 May 2011

Academic Editor: Peng He

Copyright © 2011 Lin Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. A. W. Elemans, R. van Hameren, R. J. M. Nolte, and A. E. Rowan, “Molecular materials by self-assembly of porphyrins, phthalocyanines, and perylenes,” Advanced Materials, vol. 18, no. 10, pp. 1251–1266, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. T. S. Balaban, “Tailoring porphyrins and chlorins for self-assembly in biomimetic artificial antenna systems,” Accounts of Chemical Research, vol. 38, no. 8, pp. 612–623, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Kim, M. F. Mayer, and S. C. Zimmerman, “A new route to organic nanotubes from porphyrin dendrimers,” Angewandte Chemie—International Edition, vol. 42, no. 10, pp. 1121–1126, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. L. J. Twyman and Y. Ge, “Porphyrin cored hyperbranched polymers as heme protein models,” Chemical Communications, no. 15, pp. 1658–1660, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Li, X. Xu, M. Sun et al., “Porphyrin-cored star polymers as efficient nondoped red light-emitting materials,” Macromolecules, vol. 39, no. 1, pp. 456–461, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Imaoka, R. Tanaka, S. Arimoto, M. Sakai, M. Fujii, and K. Yamamoto, “Probing stepwise complexation in phenylazomethine dendrimers by a metallo-porphyrin core,” Journal of the American Chemical Society, vol. 127, no. 40, pp. 13896–13905, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Loiseau, S. Campagna, A. Hameurlaine, and W. Dehaen, “Dendrimers made of porphyrin cores and carbazole chromophores as peripheral units. Absorption spectra, luminescence properties, and oxidation behavior,” Journal of the American Chemical Society, vol. 127, no. 32, pp. 11352–11363, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Zheng, I. R. Oviedo, and L. J. Twyman, “Pseudo-generational effects observed for a series of hyperbranched polymers when applied as epoxidation catalysts,” Macromolecules, vol. 41, no. 21, pp. 7776–7779, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Hecht, H. Ihre, and J. M. J. Fréchet, “Porphyrin core star polymers: synthesis, modification, and implication for site isolation,” Journal of the American Chemical Society, vol. 121, no. 39, pp. 9239–9240, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Hecht, N. Vladimirov, and J. M. J. Fréchet, “Encapsulation of functional moieties within branched star polymers: effect of chain length and solvent on site isolation,” Journal of the American Chemical Society, vol. 123, no. 1, pp. 18–25, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. R. H. Jin, “Controlled location of porphyrin in aqueous micelles self-assembled from porphyrin centered amphiphilic star poly(oxazolines),” Advanced Materials, vol. 14, no. 12, pp. 889–892, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. R. H. Jin, “Self-assembly of porphyrin-centered amphiphilic star block copolymer into polymeric vesicular aggregates,” Macromolecular Chemistry and Physics, vol. 204, no. 3, pp. 403–409, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. R. H. Jin, “Water soluble star block poly(oxazoline) with porphyrin label: a unique emulsion and its shape direction,” Journal of Materials Chemistry, vol. 14, no. 3, pp. 320–327, 2004. View at Google Scholar · View at Scopus
  14. F. de Loos, I. C. Reynhout, J. J. L. M. Cornelissen, A. E. Rowan, and R. J. M. Nolte, “Construction of functional porphyrin polystyrene nano-architectures by ATRP,” Chemical Communications, no. 1, pp. 60–62, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. B. Beil and S. C. Zimmerman, “Synthesis of nanosized “cored” star polymers,” Macromolecules, vol. 37, no. 3, pp. 778–787, 2004. View at Google Scholar · View at Scopus
  16. L. R. H. High, S. J. Holder, and H. V. Penfold, “Synthesis of star polymers of styrene and alkyl (meth)acrylates from a porphyrin initiator core via ATRP,” Macromolecules, vol. 40, no. 20, pp. 7157–7165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. W. R. Dichtel, K. Y. Baek, J. M. J. Fréchet, I. B. Rietveld, and S. A. Vinogradov, “Amphiphilic diblock star polymer catalysts via atom transfer radical polymerization,” Journal of Polymer Science, Part A: Polymer Chemistry, vol. 44, no. 17, pp. 4939–4951, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Vlascici, E. F. Cosma, E. M. Pica et al., “Free base porphyrins as ionophores for heavy metal sensors,” Sensors, vol. 8, no. 8, pp. 4995–5004, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Chiefari, Y. K. Chong, F. Ercole et al., “Living free-radical polymerization by reversible addition—fragmentation chain transfer: the RAFT process,” Macromolecules, vol. 31, no. 16, pp. 5559–5562, 1998. View at Google Scholar · View at Scopus
  20. C. Barner-Kowollik, T. P. Davis, J. P. A. Heuts, M. H. Stenzel, P. Vana, and M. Whittaker, “RAFTing down under: tales of missing radicals, fancy architectures, and mysterious holes,” Journal of Polymer Science, Part A: Polymer Chemistry, vol. 41, no. 3, pp. 365–375, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Moad, E. Rizzardo, and S. H. Thang, “Living radical polymerization by the RAFT process,” Australian Journal of Chemistry, vol. 58, no. 6, pp. 379–410, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Moad, E. Rizzardo, and S. H. Thang, “Living radical polymerization by the RAFT process—a first update,” Australian Journal of Chemistry, vol. 59, no. 10, pp. 669–692, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. A. B. Lowe and C. L. McCormick, “Reversible addition-fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media,” Progress in Polymer Science, vol. 32, no. 3, pp. 283–351, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Boyer, M. H. Stenzel, and T. P. Davis, “Building nanostructures using RAFT polymerization,” Journal of Polymer Science, Part A: Polymer Chemistry, vol. 49, no. 3, pp. 551–595, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. M. H. Stenzel, T. P. Davis, and C. Barner-Kowollik, “Poly(vinyl alcohol) star polymers prepared via MADIX/RAFT polymerisation,” Chemical Communications, vol. 10, no. 13, pp. 1546–1547, 2004. View at Google Scholar · View at Scopus
  26. V. Darcos, A. Duréault, D. Taton et al., “Synthesis of hybrid dendrimer-star polymers by the RAFT process,” Chemical Communications, vol. 10, no. 18, pp. 2110–2111, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Bernard, A. Favier, L. Zhang et al., “Poly(vinyl ester) star polymers via xanthate-mediated living radical polymerization: from poly(vinyl alcohol) to glycopolymer stars,” Macromolecules, vol. 38, no. 13, pp. 5475–5484, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Bernard, X. Hao, T. P. Davis, C. Barner-Kowollik, and M. H. Stenzel, “Synthesis of various glycopolymer architectures via RAFT polymerization: from block copolymers to stars,” Biomacromolecules, vol. 7, no. 1, pp. 232–238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. A. J. Inglis, S. Sinnwell, T. P. Davis, C. Barner-Kowollik, and M. H. Stenzel, “Reversible addition fragmentation chain transfer (RAFT) and hetero-diels-alder chemistry as a convenient conjugation tool for access to complex macromolecular designs,” Macromolecules, vol. 41, no. 12, pp. 4120–4126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Hart-Smith, H. Chaffey-Millar, and C. Barner-Kowollik, “Living star polymer formation: detailed assessment of poly(acrylate) radical reaction pathways via ESI-MS,” Macromolecules, vol. 41, no. 9, pp. 3023–3041, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Johnston-Hall and M. J. Monteiro, “Diffusion controlled termination of linear polystyrene radicals in linear, 4-Arm, and 6-Arm star polymer matrices in dilute, semidilute, and concentrated solution conditions,” Macromolecules, vol. 41, no. 3, pp. 727–736, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. R. T. A. Mayadunne, J. Jeffery, G. Moad, and E. Rizzardo, “Living free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization): approaches to star polymers,” Macromolecules, vol. 36, no. 5, pp. 1505–1513, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Stenzel-Rosenbaum, T. P. Davis, V. Chen, and A. G. Fane, “Star-polymer synthesis via radical reversible addition-fragmentation chain-transfer polymerization,” Journal of Polymer Science, Part A: Polymer Chemistry, vol. 39, no. 16, pp. 2777–2783, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Chaffey-Millar, M. H. Stenzel, T. P. Davis, M. L. Coote, and C. Barner-Kowollik, “Synthesis and degradation behaviour of cyclic poly(ε—caprolactone),” Macromolecules, vol. 39, pp. 6406–6419, 2006. View at Google Scholar
  35. C. Barner-Kowollik, T. P. Davis, and M. H. Stenzel, “Synthesis of star polymers using RAFT polymerization: what is possible?” Australian Journal of Chemistry, vol. 59, no. 10, pp. 719–727, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Mori, H. Ookuma, and T. Endo, “Poly(N-vinylcarbazole) star polymers and amphiphilic star block copolymers by xanthate-mediated controlled radical polymerization,” Macromolecules, vol. 41, no. 19, pp. 6925–6934, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Boschmann and P. Vana, “Z-RAFT star polymerizations of acrylates: star coupling via intermolecular chain transfer to polymer,” Macromolecules, vol. 40, no. 8, pp. 2683–2693, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. J. T. Lai, D. Filla, and R. Shea, “Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents,” Macromolecules, vol. 35, no. 18, pp. 6754–6756, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Hentschel, K. Bleek, O. Ernsty, J. F. Lutz, and H. G. Börner, “Easy access to bioactive peptide-polymer conjugates via RAFT,” Macromolecules, vol. 41, no. 4, pp. 1073–1075, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. Z. An, Q. Shi, W. Tang, C. K. Tsung, C. J. Hawker, and G. D. Stucky, “Facile RAFT precipitation polymerization for the microwave-assisted synthesis of well-defined, double hydrophilic block copolymers and nanostructured hydrogels,” Journal of the American Chemical Society, vol. 129, no. 46, pp. 14493–14499, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. J. N. Cambre, D. Roy, S. R. Gondi, and B. S. Sumerlin, “Facile strategy to well-defined water-soluble boronic acid (co)polymers,” Journal of the American Chemical Society, vol. 129, no. 34, pp. 10348–10349, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Cheng, G. Sun, E. Khoshdel, and K. L. Wooley, “Well-defined vinyl ketone-based polymers by reversible addition—fragmentation chain transfer polymerization,” Journal of the American Chemical Society, vol. 129, no. 33, pp. 10086–10087, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Skaff and T. Emrick, “Reversible addition fragmentation chain transfer (RAFT) polymerization from unprotected cadmium selenide nanoparticles,” Angewandte Chemie—International Edition, vol. 43, no. 40, pp. 5383–5386, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. M. D. Rowe-Konopacki and S. G. Boyes, “Synthesis of surface initiated diblock copolymer brushes from flat silicon substrates utilizing the RAFT polymerization technique,” Macromolecules, vol. 40, no. 4, pp. 879–888, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. Z. El-Hachemi, G. Mancini, J. M. Ribó, and A. Sorrenti, “Role of the hydrophobic effect in the transfer of chirality from molecules to complex systems: from chiral surfactants to porphyrin/surfactant aggregates,” Journal of the American Chemical Society, vol. 130, no. 45, pp. 15176–15184, 2008. View at Publisher · View at Google Scholar · View at Scopus