Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2012, Article ID 454359, 9 pages
http://dx.doi.org/10.1155/2012/454359
Research Article

Wheat Gluten-Laminated Paperboard with Improved Moisture Barrier Properties: A New Concept Using a Plasticizer (Glycerol) Containing a Hydrophobic Component (Oleic Acid)

1Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
2Innventia, P.O. Box 5604, 114 86 Stockholm, Sweden

Received 15 October 2011; Revised 27 March 2012; Accepted 30 March 2012

Academic Editor: Wen Fu Lee

Copyright © 2012 Sung-Woo Cho et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Lagrain, B. Goderis, K. Brijs, and J. A. Delcour, “Molecular basis of processing wheat gluten toward biobased materials,” Biomacromolecules, vol. 11, no. 3, pp. 533–541, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. T. O. J. Blomfeldt, R. T. Olsson, M. Menon, D. Plackett, E. Johansson, and M. S. Hedenqvist, “Novel foams based on freeze-dried renewable vital wheat gluten,” Macromolecular Materials and Engineering, vol. 295, no. 9, pp. 796–801, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Olabarrieta, S. W. Cho, M. Gällstedt, J. R. Sarasua, E. Johansson, and M. S. Hedenqvist, “Aging properties of films of plasticized vital wheat gluten cast from acidic and basic solutions,” Biomacromolecules, vol. 7, no. 5, pp. 1657–1664, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Gällstedt, A. Mattozzi, E. Johansson, and M. S. Hedenqvist, “Transport and tensile properties of compression-molded wheat gluten films,” Biomacromolecules, vol. 5, no. 5, pp. 2020–2028, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. N. H. Ullsten, M. Gällstedt, E. Johansson, A. Gräslund, and M. S. Hedenqvist, “Enlarged processing window of plasticized wheat gluten using salicylic acid,” Biomacromolecules, vol. 7, no. 3, pp. 771–776, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S. W. Cho, M. Gällstedt, E. Johansson, and M. S. Hedenqvist, “Injection-molded nanocomposites and materials based on wheat gluten,” International Journal of Biological Macromolecules, vol. 48, no. 1, pp. 146–152, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. N. H. Ullsten, S. W. Cho, G. Spencer, M. Gällstedt, E. Johansson, and M. S. Hedenqvist, “Properties of extruded vital wheat gluten sheets with sodium hydroxide and salicylic acid,” Biomacromolecules, vol. 10, no. 3, pp. 479–488, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Han, S. Salmieri, C. Le Tien, and M. Lacroix, “Improvement of water barrier property of paperboard by coating application with biodegradable polymers,” Journal of Agricultural and Food Chemistry, vol. 58, no. 5, pp. 3125–3131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Ş. Kayserilioǧlu, U. Bakir, L. Yilmaz, and N. Akkaş, “Drying temperature and relative humidity effects on wheat gluten film properties,” Journal of Agricultural and Food Chemistry, vol. 51, no. 4, pp. 964–968, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Vargas, A. Albors, A. Chiralt, and C. González-Martínez, “Characterization of chitosan-oleic acid composite films,” Food Hydrocolloids, vol. 23, no. 2, pp. 536–547, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Fernández, E. D. De Apodaca, M. Cebrián, M. C. Villarán, and J. I. Maté, “Effect of the unsaturation degree and concentration of fatty acids on the properties of WPI-based edible films,” European Food Research and Technology, vol. 224, no. 4, pp. 415–420, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Gontard, S. Marchesseau, J.-I. Cuq, and S. Guilbert, “Water vapour permeability of edible bilayer films of wheat gluten and lipids,” International Journal of Food Science and Technology, vol. 30, no. 1, pp. 49–56, 1995. View at Google Scholar
  13. N. Gontard, C. Duchez, J.-I. Cuq, and S. Guilbert, “Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties,” International Journal of Food Science and Technology, vol. 29, no. 1, pp. 39–50, 1994. View at Google Scholar
  14. S. W. Cho, M. Gällstedt, and M. S. Hedenqvist, “Properties of wheat gluten/poly(lactic acid) laminates,” Journal of Agricultural and Food Chemistry, vol. 58, no. 12, pp. 7344–7350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Gällstedt, J. Törnqvist, and M. S. Hedenqvist, “Properties of nitrocellulose-coated and polyethylene-laminated chitosan and whey films,” Journal of Polymer Science, Part B, vol. 39, no. 10, pp. 985–992, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. S. I. Hong and J. M. Krochta, “Whey protein isolate coating on LDPE film as a novel oxygen barrier in the composite structure,” Packaging Technology and Science, vol. 17, no. 1, pp. 13–21, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. C. M. Hansen, Hansen Solubility Parameters: A User's Handbook, CRC Press, Boca Raton, Fla, USA, 2000.
  18. T. O. J. Blomfeldt, R. Kuktaite, E. Johansson, and M. S. Hedenqvist, “Mechanical properties and network structure of wheat gluten foams,” Biomacromolecules, vol. 12, no. 5, pp. 1707–1715, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. M. S. Hedenqvist, M. Krook, and U. W. Gedde, “Two-stage sorption in rubbery semicrystalline polymers: transport of primary alcohols in polyesteramide,” Polymer, vol. 43, no. 10, pp. 3061–3068, 2002. View at Google Scholar · View at Scopus
  20. P. Guerrero, A. Retegi, N. Gabilondo, and K. De La Caba, “Mechanical and thermal properties of soy protein films processed by casting and compression,” Journal of Food Engineering, vol. 100, no. 1, pp. 145–151, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Zhang, R. He, and H. C. Gu, “Oleic acid coating on the monodisperse magnetite nanoparticles,” Applied Surface Science, vol. 253, no. 5, pp. 2611–2617, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. J. W. Lee, S. M. Son, and S. I. Hong, “Characterization of protein-coated polypropylene films as a novel composite structure for active food packaging application,” Journal of Food Engineering, vol. 86, no. 4, pp. 484–493, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. L. F. Hoyt, “New table of the refractive index of pure glycerol at 20°C,” Industrial & Engineering Chemistry Research, vol. 26, no. 3, pp. 329–332, 1934. View at Google Scholar
  24. F. F. De Sousa, S. G. C. Moreira, S. J. D. S. Da Silva, J. Del Nero, and P. Alcantara, “Dielectric properties of oleic acid in liquid phase,” Journal of Bionanoscience, vol. 3, no. 2, pp. 139–142, 2009. View at Publisher · View at Google Scholar · View at Scopus