Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2012, Article ID 679252, 8 pages
http://dx.doi.org/10.1155/2012/679252
Research Article

Understanding the Reinforcing Mechanisms in Kenaf Fiber/PLA and Kenaf Fiber/PP Composites: A Comparative Study

1Functional Materials Research Center, Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343, Republic of Korea
2G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

Received 14 April 2012; Revised 13 July 2012; Accepted 16 July 2012

Academic Editor: Alain Dufresne

Copyright © 2012 Seong Ok Han et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Garlotta, “A literature review of poly(lactic acid),” Journal of Polymers and the Environment, vol. 9, no. 2, pp. 63–84, 2001. View at Google Scholar · View at Scopus
  2. R. E. Drumright, P. R. Gruber, and D. E. Henton, “Polylactic acid technology,” Advanced Materials, vol. 12, pp. 1841–1846, 2000. View at Publisher · View at Google Scholar
  3. J. Lunt, “Large-scale production, properties and commercial applications of poly lactic acid polymers,” Polymer Degradation and Stability, vol. 59, no. 1–3, pp. 145–152, 1998. View at Google Scholar · View at Scopus
  4. O. Martin and L. Avérous, “Poly(lactic acid): plasticization and properties of biodegradable multiphase systems,” Polymer, vol. 42, no. 14, pp. 6209–6219, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Tsuji and Y. Ikada, “Properties and morphologies of poly(l-lactide): 1. Annealing condition effects on properties and morphologies of poly(l-lactide),” Polymer, vol. 36, no. 14, pp. 2709–2716, 1995. View at Google Scholar · View at Scopus
  6. L. Fambri, A. Pegoretti, R. Fenner, S. D. Incardona, and C. Migliaresi, “Biodegradable fibres of poly(L-lactic acid) produced by melt spinning,” Polymer, vol. 38, no. 1, pp. 79–85, 1997. View at Google Scholar · View at Scopus
  7. S. O. Han, M. Karevan, M. A. Bhuiyan, J. H. Park, and K. Kalaitzidou, “Effect of exfoliated graphite nanoplatelets on the mechanical and viscoelastic properties of poly(lactic acid) biocomposites reinforced with kenaf fibers,” Journal of Materials Science, vol. 47, pp. 3535–3543, 2012. View at Publisher · View at Google Scholar
  8. M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, “Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers,” Composites Science and Technology, vol. 68, no. 2, pp. 424–432, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Serizawa, K. Inoue, and M. Iji, “Kenaf-fiber-reinforced poly(lactic acid) used for electronic products,” Journal of Applied Polymer Science, vol. 100, no. 1, pp. 618–624, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Ochi, “Mechanical properties of kenaf fibers and kenaf/PLA composites,” Mechanics of Materials, vol. 40, no. 4-5, pp. 446–452, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Villmow, P. Pötschke, S. Pegel, L. Häussler, and B. Kretzschmar, “Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix,” Polymer, vol. 49, no. 16, pp. 3500–3509, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. C.-S. Wu and H.-T. Liao, “Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites,” Polymer, vol. 48, no. 15, pp. 4449–4458, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. D. G. Miloaga, H. A. A. Hosein, M. J. Rich, K. Kjoller, and L. T. Drzal, “Scanning probe thermal analysis of polylactic acid/exfoliated graphite nanoplatelet (xGnP) nanocomposites,” Journal of Biobased Materials and Bioenergy, vol. 2, no. 1, pp. 78–84, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Murariu, A. L. Dechief, L. Bonnaud et al., “The production and properties of polylactide composites filled with expanded graphite,” Polymer Degradation and Stability, vol. 95, no. 5, pp. 889–900, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Tait, A. Pegoretti, A. Dorigato, and K. Kalaitzidou, “The effect of filler type and content and the manufacturing process on the performance of multifunctional carbon/poly-lactide composites,” Carbon, vol. 49, no. 13, pp. 4280–4290, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. I.-H. Kim and Y. G. Jeong, “Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity,” Journal of Polymer Science B, vol. 48, no. 8, pp. 850–858, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M.-A. Paul et al., “New nanocomposite materials based on plasticized poly(l-lactide) and organo-modified montmorillonites: thermal and morphological study,” Polymer, vol. 44, pp. 443–450, 2003. View at Publisher · View at Google Scholar
  18. S. S. Ray and M. Okamoto, “Biodegradable polylactide and its nanocomposites: opening a new dimension for plastics and composites,” Macromolecular Rapid Communications, vol. 24, no. 14, pp. 815–840, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Jiang, J. Zhang, and M. P. Wolcott, “Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms,” Polymer, vol. 48, no. 26, pp. 7632–7644, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Wambua, J. Ivens, and I. Verpoest, “Natural fibres: can they replace glass in fibre reinforced plastics?” Composites Science and Technology, vol. 63, no. 9, pp. 1259–1264, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. A. K. Mohanty, M. Misra, and G. Hinrichsen, “Biofibres, biodegradable polymers and biocomposites: an overview,” Macromolecular Materials and Engineering, vol. 276, pp. 1–24, 2000. View at Publisher · View at Google Scholar
  22. J. E. Riccieri, L. H. De Carvalho, and A. Vázquez, “Interfacial properties and initial step of the water sorption in unidirectional unsaturated polyester/vegetable fiber composites,” Polymer Composites, vol. 20, no. 1, pp. 29–37, 1999. View at Google Scholar · View at Scopus
  23. Y. H. Han, S. O. Han, D. Cho, and H. I. Kim, “Dynamic mechanical properties of natural fiber/polymer biocomposites: the effect of fiber treatment with electron beam,” Macromolecular Research, vol. 16, no. 3, pp. 253–260, 2008. View at Google Scholar · View at Scopus
  24. A. K. Mohanty, M. A. Khan, and G. Hinrichsen, “Surface modification of jute and its influence on performance of biodegradable jute-fabric/Biopol composites,” Composites Science and Technology, vol. 60, no. 7, pp. 1115–1124, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. H. Han, S. O. Han, D. Cho, and H. I. Kim, “Kenaf/polypropylene biocomposites: effects of electron beam irradiation and alkali treatment on kenaf natural fibers,” Composite Interfaces, vol. 14, no. 5-6, pp. 559–578, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Feng, D. F. Caulfield, and A. R. Sanadi, “Effect of compatibilizer on the structure-property relationships of kenaf-fiber/polypropylene composites,” Polymer Composites, vol. 22, no. 4, pp. 506–517, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Jonoobi, K. Oksmand Niska, J. Harun, A. Shakeri, and M. Misra, “Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers,” BioResources, vol. 4, no. 2, pp. 626–639, 2009. View at Google Scholar · View at Scopus
  28. J. N. McGovern, “Fibers and vegetable,” in Encyclopedia of Polymer Science and Engineering, H. F. Mark, N. Bikales, C. G. Overberger et al., Eds., vol. 7, Wiley Interscience, 1987. View at Google Scholar
  29. H.-L. Chen and R. S. Porter, “Composite of polyethylene and kenaf, a natural cellulose fiber,” Journal of Applied Polymer Science, vol. 54, no. 11, pp. 1781–1783, 1994. View at Google Scholar · View at Scopus
  30. J. H. Chen, F. C. Tsai, Y. H. Nien, and P. H. Yeh, “Isothermal crystallization of isotactic polypropylene blended with low molecular weight atactic polypropylene. Part I. Thermal properties and morphology development,” Polymer, vol. 46, no. 15, pp. 5680–5688, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. J. R. Isasi, R. G. Alamo, and L. Mandelkern, “The thermal expansion of the monoclinic unit cell of isotactic polypropylene,” Journal of Polymer Science B, vol. 35, no. 17, pp. 2945–2949, 1997. View at Google Scholar · View at Scopus
  32. Q. Zheng, Y. Shangguan, S. Yan, Y. Song, M. Peng, and Q. Zhang, “Structure, morphology and non-isothermal crystallization behavior of polypropylene catalloys,” Polymer, vol. 46, no. 9, pp. 3163–3174, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Clemons and A. R. Sanadi, “Instrumented impact testing of kenaf fiber reinforced polypropylene composites: effects of temperature and composition,” Journal of Reinforced Plastics and Composites, vol. 26, no. 15, pp. 1587–1602, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. D. R. Burfield, “Polymer glass transition temperatures,” Journal of Chemical Education, vol. 64, no. 10, p. 875, 1987. View at Google Scholar · View at Scopus
  35. M. P. Stevens, Polymer Chemistry: An Introduction, Oxford University Press, 3rd edition, 1999.
  36. S. Doroudiani, C. B. Park, and M. T. Kortschot, “Processing and characterization of microcellular foamed high-density polyethylene/isotactic polypropylene blends,” Polymer Engineering and Science, vol. 38, no. 7, pp. 1205–1215, 1998. View at Google Scholar · View at Scopus
  37. A. R. Sanadi and D. F. Caulfield, “Transcrystalline interphases in natural fiber-PP composites: effect of coupling agent,” Composite Interfaces, vol. 7, no. 1, pp. 31–43, 2000. View at Google Scholar · View at Scopus
  38. S. M. Ogbomo, K. Chapman, C. Webber, R. Bledsoe, and N. A. D'Souza, “Benefits of low kenaf loading in biobased composites of poly(l-lactide) and kenaf fiber,” Journal of Applied Polymer Science, vol. 112, no. 3, pp. 1294–1301, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Suryanegara, A. N. Nakagaito, and H. Yano, “The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites,” Composites Science and Technology, vol. 69, no. 7-8, pp. 1187–1192, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Murariu, A. Da Silva Ferreira, P. Degée, M. Alexandre, and P. Dubois, “Polylactide compositions. Part 1: effect of filler content and size on mechanical properties of PLA/calcium sulfate composites,” Polymer, vol. 48, no. 9, pp. 2613–2618, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. T. A. Huy, R. Adhikari, T. Lüpke, S. Henning, and G. H. Michler, “Molecular deformation mechanisms of isotactic polypropylene in α- and β-crystal forms by FTIR spectroscopy,” Journal of Polymer Science B, vol. 42, no. 24, pp. 4478–4488, 2004. View at Publisher · View at Google Scholar · View at Scopus