Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2014 (2014), Article ID 758351, 7 pages
http://dx.doi.org/10.1155/2014/758351
Research Article

Using Rutile TiO2 Nanoparticles Reinforcing High Density Polyethylene Resin

1Sunchon National University, Republic of Korea
2Institute for Tropical Technology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
3School of Mechanical Engineering, Hanoi University of Technology, Vietnam

Received 3 May 2013; Accepted 23 April 2014; Published 27 May 2014

Academic Editor: Sadhan C. Jana

Copyright © 2014 Vu Manh Tuan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kaneko and I. Okura, Photocatalysis Science and Technology, Spinger, New York, NY, USA, 2002.
  2. A. Chandra, L.-S. Turng, P. Gopalan, R. M. Rowell, and S. Gong, “Study of utilizing thin polymer surface coating on the nanoparticles for melt compounding of polycarbonate/alumina nanocomposites and their optical properties,” Composites Science and Technology, vol. 68, no. 3-4, pp. 768–776, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Chandra, L.-S. Turng, S. Gong, D. C. Hall, D. F. Caulfield, and H. Yang, “Study of polystyrene/titanium dioxide nanocomposites via melt compounding for optical applications,” Polymer Composites, vol. 28, no. 2, pp. 241–250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Yang and Y. Dan, “Preparation and characterization of poly(methyl methacrylate)/titanium oxide composite particles,” Colloid and Polymer Science, vol. 284, no. 3, pp. 243–250, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Z. Rong, M. Q. Zhang, Y. X. Zheng, H. M. Zeng, R. Walter, and K. Friedrich, “Structure-property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites,” Polymer, vol. 42, no. 1, pp. 167–183, 2001. View at Google Scholar · View at Scopus
  6. E. Reynaud, T. Jouen, C. Gauthier, G. Vigier, and J. Varlet, “Nanofillers in polymeric matrix: a study on silica reinforced PA6,” Polymer, vol. 42, no. 21, pp. 8759–8768, 2001. View at Google Scholar · View at Scopus
  7. D. Olmos, C. Domínguez, P. D. Castrillo, and J. Gonzalez-Benito, “Crystallization and final morphology of HDPE: effect of the high energy ball milling and the presence of TiO2 nanoparticles,” Polymer, vol. 50, no. 7, pp. 1732–1742, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Wang, S. Zhang, and X. Wu, “Synthesis and optical properties of mesostructured titania-surfactant inorganic-organic nanocomposites,” Nanotechnology, vol. 15, no. 9, pp. 1162–1165, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Wu, D. Wang, and S. Yang, “Preparation and characterization of stearate-capped titanium dioxide nanoparticles,” Journal of Colloid and Interface Science, vol. 222, no. 1, pp. 37–40, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. T. K. Misra and C.-Y. Liu, “Synthesis, isolation, and redispersion of resorcinarene-capped anatase TiO2 nanoparticles in nonaqueous solvents,” Journal of Colloid and Interface Science, vol. 310, no. 1, pp. 178–183, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Tada, O. Nishio, N. Kubo et al., “Dispersion stability of TiO2 nanoparticles covered with SiOx monolayers in water,” Journal of Colloid and Interface Science, vol. 306, no. 2, pp. 274–280, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Gamble, M. A. Henderson, and C. T. Campbell, “Organofunctionalization of TiO2(110): (3,3,3-trifluoropropyl)trimethoxysilane adsorption,” Journal of Physical Chemistry B, vol. 102, no. 23, pp. 4536–4543, 1998. View at Google Scholar · View at Scopus
  13. S. Cho and W. Choi, “Solid-phase photocatalytic degradation of PVC-TiO2 polymer composites,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 143, no. 2-3, pp. 221–228, 2001. View at Google Scholar · View at Scopus
  14. H. Hidaka, Y. Suzuki, K. Nohara et al., “Photocatalyzed degradation of polymers in aqueous semiconductor suspensions I: Photooxidation of Solid Particles of Polyvinyl chloride,” Journal of Polymer Science Part A: Polymer Chemistry, vol. 34, pp. 1311–1316, 1996. View at Google Scholar
  15. T. J. Turton and J. R. White, “Effect of stabilizer and pigment on photo-degradation depth profiles in polypropylene,” Polymer Degradation and Stability, vol. 74, no. 3, pp. 559–568, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Ohtani, S. Adzuma, H. Miyadzu, S.-I. Nishimoto, and T. Kagiya, “Photocatalytic degradation of polypropylene film by dispersed titanium dioxide particles,” Polymer Degradation and Stability, vol. 23, no. 3, pp. 271–278, 1989. View at Google Scholar · View at Scopus
  17. L. Zan, L. Tian, Z. Liu, and Z. Peng, “A new polystyrene-TiO2 nanocomposite film and its photocatalytic degradation,” Applied Catalysis A: General, vol. 264, no. 2, pp. 237–242, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Miyazaki and H. Nakatani, “Preparation of degradable polypropylene by an addition of poly(ethylene oxide) microcapsule containing TiO2,” Polymer Degradation and Stability, vol. 94, no. 12, pp. 2114–2120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Zhu, G. C. Allen, J. M. Adams, D. Gittins, P. J. Heard, and D. R. Skuse, “Statistical analysis of particle dispersion in a PE/TiO2 nanocomposite film,” Composite Structures, vol. 92, no. 9, pp. 2203–2207, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. N. V. Giang and M. D. Huynh, “Study on the surface modification of rutile titanium dioxide nanoparticles using silane coupling agent,” Journal of Analytical Sciences. In press.
  21. N. Nakayama and T. Hayashi, “Preparation of TiO2 nanoparticles surface-modified by both carboxylic acid and amine: Dispersibility and stabilization in organic solvents,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 317, no. 1–3, pp. 543–550, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. R. K. Dey, A. S. Oliveira, T. Patnaik, V. K. Singh, D. Tiwary, and C. Airoldi, “Grafting of organosilane derived from 3-glycidoxypropyltrimethoxysilane and thiourea onto magnesium phyllosilicate by sol-gel process and investigation of metal adsorption properties,” Journal of Solid State Chemistry, vol. 182, no. 8, pp. 2010–2017, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. N. V. Giang, D. Q. Tham, and T. S. Ha, “Mechanical, electrical properties and morphology of high-density polyethylene/multi-walled carbon nanotubes composites,” in Proceedings of the 1st International Workshop on Functional Materials and The 3rd International Workshop on Nanophysics and Nanotechnology, pp. 151–154, Ha Long City, Vietnam, December 2006.
  24. N. V. Giang and V. D. Son Tho, “Morphological characterization correlation in resistivity of high-density polyethylene/multi-walled carbon nanotubes composites,” Journal of Science and Technology, vol. 3, pp. 64–70, 2009. View at Google Scholar