Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2015, Article ID 383279, 14 pages
http://dx.doi.org/10.1155/2015/383279
Research Article

Potential Environmental Benefits of Ultralight Particleboards with Biobased Foam Cores

1Bern University of Applied Sciences, Institute for Materials and Wood Technology, Solothurnstrasse 102, 2500 Biel-Bienne, Switzerland
2Thünen Institute of Wood Research, Leuschnerstr. 91c, 21031 Hamburg, Germany

Received 20 December 2014; Accepted 5 March 2015

Academic Editor: Nicole Stark

Copyright © 2015 Christelle Ganne-Chédeville and Stefan Diederichs. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. May-Pat, F. Aviles, and J. Aguilar, “Mechanical properties of sandwich panels with perforated foam cores,” Journal of Sandwich Structures and Materials, vol. 13, no. 4, pp. 427–444, 2011. View at Publisher · View at Google Scholar
  2. L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, UK, 2nd edition, 1997.
  3. D. Zenkert, Handbook of Sandwich Construction, Engineering Materials Advisory Services, Worcester, UK, 2008.
  4. J. Luedtke, J. Welling, H. Thoemen, and M. C. Barbu, “Lightweight wood-based board and process for producing it,” WO 2008/071617 A2, 2008.
  5. M. F. N. Dos Santos, R. A. G. Battistelle, B. S. Bezerra, and H. S. A. Varum, “Comparative study of the life cycle assessment of particleboards made of residues from sugarcane bagasse (Saccharum spp.) and pine wood shavings (Pinus elliottii),” Journal of Cleaner Production, vol. 64, pp. 345–355, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Rueter and S. Diederichs, Ökobilanz-Basisdaten für Bauprodukte aus Holz, Thünen Institut, Hamburg, Germany, 2012.
  7. J. B. Wilson, “Life-cycle inventory of particleboard in terms of resources, emissions, energy and carbon,” Wood and Fiber Science, vol. 42, no. 1, pp. 90–106, 2010. View at Google Scholar · View at Scopus
  8. F. Werner and K. Richter, “Wooden building products in comparative LCA,” The International Journal of Life Cycle Assessment, vol. 12, no. 7, pp. 470–479, 2007. View at Publisher · View at Google Scholar
  9. B. Rivela, A. Hospido, M. T. Moreira, and G. Feijoo, “Life cycle inventory of particleboard: a case study in the wood sector,” International Journal of Life Cycle Assessment, vol. 11, no. 2, pp. 106–113, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Frühwald, M. Scharai-Rad, and J. Hasch, Ökologische Bewertung von Holzwerkstoffen Schlußbericht März 2000 Ergänzt in den Bereichen Spanplattenrecycling und OSB-Bilanzen, Universität Hamburg, Hamburg, Germany, 2000.
  11. S. Feifel, A. Faul, and L. Schebek, “Vergleichende ökologische Analyse leichter Holzwerkstoffplatten mit unterschiedlichem Aufbau,” Holztechnologie, vol. 52, pp. 22–27, 2011. View at Google Scholar
  12. S. Feifel, W.-R. Poganietz, and L. Schebek, “The utilization of light weight boards for reducing air emissions by the German wood industry—a perspective?” Environmental Sciences Europe, vol. 25, no. 1, article 5, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. D. A. L. Silva, F. A. R. Lahr, A. L. R. Pavan et al., “Do wood-based panels made with agro-industrial residues provide environmentally benign alternatives? An LCA case study of sugarcane bagasse addition to particle board manufacturing,” The International Journal of Life Cycle Assessment, vol. 19, no. 10, pp. 1767–1778, 2014. View at Publisher · View at Google Scholar
  14. R. J. Plevin, M. A. Delucchi, and F. Creutzig, “Using attributional life cycle assessment to estimate climate-change mitigation benefits misleads policy makers,” Journal of Industrial Ecology, vol. 18, no. 1, pp. 73–83, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Suh and Y. Yang, “On the uncanny capabilities of consequential LCA,” The International Journal of Life Cycle Assessment, vol. 19, no. 6, pp. 1179–1184, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Brandão, R. Clift, A. Cowie, and S. Greenhalgh, “The use of life cycle assessment in the support of robust (climate) policy making: comment on “Using attributional life cycle assessment to estimate climate-change mitigation …”,” Journal of Industrial Ecology, vol. 18, no. 3, pp. 461–463, 2014. View at Publisher · View at Google Scholar
  17. J. M. Earles and A. Halog, “Consequential life cycle assessment: a review,” The International Journal of Life Cycle Assessment, vol. 16, no. 5, pp. 445–453, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. EN 15804:2013. Sustainability of construction works. Environmental product declarations. Core rules for the product category of construction products; German version EN 15804:2012+A12013. Brussels: European Committee for Standardization, CEN/TC 350—Sustainability of con- struction works, 2013.
  19. ISO, “Environmental management—life cycle assessment—requirements and guidelines,” ISO 14044:2006, 2006. View at Google Scholar
  20. ISO 14025:2006, Environmental Labels and Declarations—Type III Environmental Declarations—Principles and Procedures, vol. 3, 2006.
  21. ISO, DIN EN ISO 14040:2006. Umweltmanagement—Ökobilanz—Grundsätze und Rahmenbedingungen, ISO, 2006.
  22. British Standards, “Round and sawn timber—environmental product declarations—product category rules for wood and wood-based products for use in construction,” BS EN 16485:2014, 2014. View at Google Scholar
  23. Aveny GmbH, Aveny LCA, 2012.
  24. R. Frischknecht, N. Jungbluth, H.-J. Althaus et al., “The ecoinvent database: overview and methodological framework,” International Journal of Life Cycle Assessment, vol. 10, no. 1, pp. 3–9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Shalbafan, J. Luedtke, J. Welling, and H. Thoemen, “Comparison of foam core materials in innovative lightweight wood-based panels,” European Journal of Wood and Wood Products, vol. 70, no. 1–3, pp. 287–292, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Thoemen, “Ultra-light bio-based particleboard with a foam core—NRP 66 ‘Resource Wood’,” 2012, http://www.nfp66.ch/E/projects/wood-material-for-components/ultra-light-bio-based-particleboard/Pages/default.aspx.
  27. BSI, “Particleboards—specifications,” Tech. Rep. EN 312:2010, British Standards Institution, 2010. View at Google Scholar
  28. S. K. Diederichs, “2010 Status quo for life-cycle inventory and environmental impact assessment of the core sawmill products in germany,” Wood and Fiber Science, vol. 46, no. 1, pp. 65–84, 2014. View at Google Scholar · View at Scopus
  29. EN 15804: Sustainability of construction works—Environmental product declarations—Core rules for the product category of construction products, 2014.
  30. B. Weidema, “Market information in life cycle assessment,” Environmental Project 863, Danish Environmental Protection Agency, 2003. View at Google Scholar
  31. T. Searchinger, R. Heimlich, R. A. Houghton et al., “Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change,” Science, vol. 319, no. 5867, pp. 1238–1240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. PE International, Gabi 4 Software and Gabi Professional Database, PE International, Stuttgart, Germany, 2012.
  33. B. Wicke, P. Verweij, H. van Meijl, D. P. van Vuuren, and A. P. C. Faaij, “Indirect land use change: review of existing models and strategies for mitigation,” Biofuels, vol. 3, no. 1, pp. 87–100, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Shapouri, J. A. Duffield, and M. Wang, “The energy balance of corn ethanol: an update,” Agricultural Economic Report 813, US Department of Agriculture, Office of the Chief Economist, Office of Energy Policy and New Uses, 2002. View at Google Scholar
  35. R. Vogt, Basisdaten zu THG-Bilanzen für Biogas-Prozessketten und Erstellung neuer THG-Bilanzen, Insitut für Energie und Umweltforschung, Heidelberg, Germany, 2008.
  36. J. B. Guinée, R. Heijungs, G. Huppes et al., Life Cycle Assessment: An Operational Guide to the ISO Standards, Leiden University, Leiden, The Netherlands, 2001.
  37. R. Frischknecht, R. Steiner, and N. Jungbluth, The Ecological Scarcity Method—Eco-Factors 2006. A Method for Impact Assessment in LCA, Federal Office for the Environment (FOEN), Geneva, Switzerland, 2009.
  38. A. D. Henderson, M. Z. Hauschild, D. van de Meent et al., “USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties,” The International Journal of Life Cycle Assessment, vol. 16, no. 8, pp. 701–709, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Laborde, “Assessing the land use change consequences of European biofuel policies,” Specific Contract SI2.580403, International Food Policy Research Institute, 2011. View at Google Scholar
  40. I. Boustead, Eco-Profiles of the European Plastics Industry—Polymethyl Methacrylate (PMMA), PlasticsEurope, Brussels, Belgium, 2005.
  41. J. Lüdtke, Entwicklung und Evaluierung eines Konzepts für die kontinuierliche Herstellung von Leichtbauplatten mit polymerbasiertem Kern und Holzwerkstoffdecklagen, Hamburg University, 2011.