Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2015, Article ID 520512, 9 pages
http://dx.doi.org/10.1155/2015/520512
Research Article

Simulation and Experimental Validation of the Hot Embossing Process of Poly(lactic-co-glycolic acid) Microstructures

School of Mechanical Engineering, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an 710049, China

Received 18 August 2014; Accepted 26 December 2014

Academic Editor: Long Yu

Copyright © 2015 Xiaopeng Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The microstructures were fabricated by hot embossing method using biodegradable material PLGA poly(lactic-co-glycolic acid), to serve as the drug carriers in the drug delivery system. The embossing process was studied in a combination of simulations and experiments. Firstly, the viscoelastic model of PLGA was built after testing the material properties. Secondly, the hot embossing process was simulated by ABAQUS finite element software. The deformation rules of PLGA during hot embossing were then achieved. The pressures inside the PLGA materials were different at various places during hot embossing, which lead to the differences of the filling speeds. As a result, the inner structures were easier to get formed than the outer structures. And the fluidity of PGLA would increase with the raising temperature, which however caused serious material overflow. Finally the hot embossing experiments were presented to verify the simulation results. Agreed with the filling rules of the simulation, enough duration was necessary to let the outer corners of the microstructures be formed completely. Moreover the trapped air in the grooves was compressed into small bubbles at the corners. It was also found that the material overflow could be prevented in the use of nonisothermal hot embossing method.