Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2015, Article ID 714352, 7 pages
http://dx.doi.org/10.1155/2015/714352
Research Article

Rheological Behavior of Renewable Polyethylene (HDPE) Composites and Sponge Gourd (Luffa cylindrica) Residue

1Instituto de Macromoléculas, Universidade Federal do Rio de Janeiro (UFRJ), Avenida Horácio Macedo, 2.030 Centro de Tecnologia, Prédio do Bloco J, 21941-598 Rio de Janeiro, RJ, Brazil
2Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524 Maracanã, Pavilhão Haroldo Lisboa da Cunha, Sala 310, 3° Andar, 20550-900 Rio de Janeiro, RJ, Brazil

Received 26 February 2015; Accepted 27 April 2015

Academic Editor: Saiful Islam

Copyright © 2015 Viviane Alves Escócio et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. S. Sarvestani, “Modeling the solid-like behavior of entangled polymer nanocomposites at low frequency regimes,” European Polymer Journal, vol. 44, no. 2, pp. 263–269, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. S. A. Cruz, M. Farah, M. Zanin, and R. E. Bretas, “Avaliação das propriedades reológicas de blendas de PEAD virgem/PEAD reciclado,” Polímeros, vol. 18, no. 2, pp. 144–151, 2008. View at Publisher · View at Google Scholar
  3. R. E. S. Bretas and M. A. D'Ávil, Reologia de polímeros Fundidos, Edufscar, São Carlos, Brazil, 2nd edition, 2005.
  4. C. González-Sánchez, C. Fonseca-Valero, A. Ochoa-Mendoza, A. Garriga-Meco, and E. Rodríguez-Hurtado, “Rheological behavior of original and recycled cellulose-polyolefin composite materials,” Composites Part A: Applied Science and Manufacturing, vol. 42, no. 9, pp. 1075–1083, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Q. Li and M. P. Wolcott, “Rheology of HDPE-wood composites. I. Steady state shear and extensional flow,” Composites Part A: Applied Science and Manufacturing, vol. 35, no. 3, pp. 303–311, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Cohen and A. B. Metzner, “Apparent slip flow of polymer solutions,” Journal of Rheology, vol. 29, no. 1, pp. 67–102, 1985. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Komuro, K. Kobayashi, T. Taniguchi, M. Sugimoto, and K. Koyama, “Wall slip and melt-fracture of polystyrene melts in capillary flow,” Polymer, vol. 51, no. 10, pp. 2221–2228, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Mohanty and S. K. Nayak, “Rheological characterization of HDPE/sisal fiber composites,” Polymer Engineering and Science, vol. 47, no. 10, pp. 1634–1642, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. ASTM D1238-10, Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer, Plastics, 08.01, ASTM-Annual Book of ASTM Standards, Philadelphia, Pa, USA, 2007.
  10. J. R. Callister and D. William, Ciência e engenharia de materiais uma introdução, LTC, Rio de Janeiro, Brazil, 7th edition, 2002.
  11. S. Mohanty and S. K. Nayak, “Short bamboo fiber-reinforced HDPE composites: influence of fiber content and modification on strength of the composite,” Journal of Reinforced Plastics and Composites, vol. 29, no. 14, pp. 2199–2210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. N. Azwa, B. F. Yousif, A. C. Manalo, and W. Karunasena, “A review on the degradability of polymeric composites based on natural fibres,” Materials and Design, vol. 47, pp. 424–442, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Nandi, S. Bose, S. Mitra, and A. K. Ghosh, “Dynamic rheology and morphology of HDPE-fumed silica composites: effect of interface modification,” Polymer Engineering and Science, vol. 53, no. 3, pp. 644–650, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. P. V. Joseph, Z. Oommen, K. Joseph, and S. Thomas, “Melt rheological behaviour of short sisal fibre reinforced polypropylene composites,” Journal of Thermoplastic Composite Materials, vol. 15, no. 2, pp. 89–114, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Mohanty, S. K. Verma, and S. K. Nayak, “Rheological characterization of PP/jute composite melts,” Journal of Applied Polymer Science, vol. 99, no. 4, pp. 1476–1484, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Jiang, J. Zhang, and M. P. Wolcott, “Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms,” Polymer, vol. 48, no. 26, pp. 7632–7644, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. T. F. Cipriano, A. L. N. Silva, A. H. M. F. T. Silva, A. M. F. Sousa, G. M. Silva, and C. R. Nascimento, “Rheological and morphological properties of composites based on polylactide and talc,” Journal of Materials Science and Engineering B, vol. 11, pp. 695–699, 2013. View at Google Scholar
  18. Á. Ábrányi, L. Százdi, B. Pukánszky, and G. J. Vancsó, “Formation and detection of clay network structure in poly(propylene)/layered silicate nanocomposites,” Macromolecular Rapid Communications, vol. 27, no. 2, pp. 132–135, 2006. View at Publisher · View at Google Scholar