Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2016 (2016), Article ID 3230109, 8 pages
Research Article

Thermal, Morphological, and Biodegradability Properties of Bioplastic Fertilizer Composites Made of Oil Palm Biomass, Fertilizer, and Poly(hydroxybutyrate-co-valerate)

1Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
2Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
3Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
4Faculty of Science, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia

Received 5 August 2015; Revised 20 December 2015; Accepted 21 January 2016

Academic Editor: Shiv Shankar

Copyright © 2016 A. S. Harmaen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Slow-release bioplastic fertilizer (BpF) composites were developed by processing oil palm empty fruit bunch (EFB), fertilizer, and poly(hydroxybutyrate-co-valerate) (PHBv) using extrusion techniques with controlled formulation and temperature. The temperature was kept at 150°C for 3 to 5 min during processing using twin-screw extruder. The PHBv lost weight gradually with the increasing temperature and its thermal degradation occurred initially at 263.4°C and reached the maximum at 300.7°C. Scanning electron microscope (SEM) images showed that the bonding of all composites created small gaps between matrices polymer and fiber because the hydrophilic characteristic of EFB fibers weakened the interfacial bonding. PHBv/EFB/NPKC2 showed faster biodegradation over PHBv/NPKC1 and PHBv/NPKC2, which was 99.35% compared to 68.66% and 90.28%, respectively.