Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2016 (2016), Article ID 6541718, 12 pages
http://dx.doi.org/10.1155/2016/6541718
Research Article

Production and Characterization of Polyhydroxyalkanoates and Native Microorganisms Synthesized from Fatty Waste

1Área Curricular de Biotecnología, Universidad Nacional de Colombia, Sede Medellín, Medellín, Colombia
2Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín, Medellín, Colombia
3Departamento de Ciencias Agronómicas, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Medellín, Medellín, Colombia

Received 28 August 2015; Accepted 4 January 2016

Academic Editor: Antonio Teixeira

Copyright © 2016 Javier Ricardo Gómez Cardozo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Castro Puig, “Los plásticos en el ámbito mundial,” June 2011, https://airdplastico.wordpress.com/2011/06/02/los-plasticos-en-el-ambito-mundial/.
  2. S. Chanprateep, “Current trends in biodegradable polyhydroxyalkanoates,” Journal of Bioscience and Bioengineering, vol. 110, no. 6, pp. 621–632, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. B. T. Cavalheiro, M. C. M. D. de Almeida, C. Grandfils, and M. M. R. da Fonseca, “Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol,” Process Biochemistry, vol. 44, no. 5, pp. 509–515, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. Y.-M. Corre, S. Bruzaud, J.-L. Audic, and Y. Grohens, “Morphology and functional properties of commercial polyhydroxyalkanoates: a comprehensive and comparative study,” Polymer Testing, vol. 31, no. 2, pp. 226–235, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Suriyamongkol, R. Weselake, S. Narine, M. Moloney, and S. Shah, “Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—a review,” Biotechnology Advances, vol. 25, no. 2, pp. 148–175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Laycock, P. Halley, S. Pratt, A. Werker, and P. Lant, “The chemomechanical properties of microbial polyhydroxyalkanoates,” Progress in Polymer Science, vol. 39, no. 2, pp. 397–442, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. Y.-M. Wong, C. J. Brigham, C. Rha, A. J. Sinskey, and K. Sudesh, “Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator,” Bioresource Technology, vol. 121, pp. 320–327, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. J. A. Posada, J. M. Naranjo, J. A. López, J. C. Higuita, and C. A. Cardona, “Design and analysis of poly-3-hydroxybutyrate production processes from crude glycerol,” Process Biochemistry, vol. 46, no. 1, pp. 310–317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Bugnicourt, P. Cinelli, A. Lazzeri, and V. Alvarez, “Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging,” Express Polymer Letters, vol. 8, no. 11, pp. 791–808, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. D. E. Agnew and B. F. Pfleger, “Synthetic biology strategies for synthesizing polyhydroxyalkanoates from unrelated carbon sources,” Chemical Engineering Science, vol. 103, pp. 58–67, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. D. M. Alonso, J. Q. Bond, and J. A. Dumesic, “Catalytic conversion of biomass to biofuels,” Green Chemistry, vol. 12, no. 9, pp. 1493–1513, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. G. N. Lee and J. Na, “Future of microbial polyesters,” Microbial Cell Factories, vol. 12, article 54, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. Liu, Y. Wang, N. He et al., “Optimization of polyhydroxybutyrate (PHB) production by excess activated sludge and microbial community analysis,” Journal of Hazardous Materials, vol. 185, no. 1, pp. 8–16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Villano, F. Valentino, A. Barbetta, L. Martino, M. Scandola, and M. Majone, “Polyhydroxyalkanoates production with mixed microbial cultures: from culture selection to polymer recovery in a high-rate continuous process,” New Biotechnology, vol. 31, no. 4, pp. 289–296, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. U. Salmiati, M. R. Salim, and G. Olsson, “Recovery of polyhydroxyalkanoates (PHAs) from mixed microbial cultures by simple digestion and saponification,” in Proceedings of the 3rd International Water Association (IWA)-ASPIRE, Conference and Exhibition, pp. 8–15, Taipei, Taiwan, October 2009.
  16. Y. Gao, X. Feng, M. Xian, Q. Wang, and G. Zhao, “Inducible cell lysis systems in microbial production of bio-based chemicals,” Applied Microbiology and Biotechnology, vol. 97, no. 16, pp. 7121–7129, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. M. López-Abelairas, M. García-Torreiro, T. Lú-Chau, J. M. Lema, and A. Steinbüchel, “Comparison of several methods for the separation of poly(3-hydroxybutyrate) from Cupriavidus necator H16 cultures,” Biochemical Engineering Journal, vol. 93, pp. 250–259, 2015. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Rébeillé, S. Jabrin, R. Bligny et al., “Methionine catabolism in Arabidopsis cells is initiated by a γ-cleavage process and leads to S-methylcysteine and isoleucine syntheses,” Proceedings of the National Academy of Sciences of the United States, vol. 103, no. 42, pp. 15687–15692, 2006. View at Publisher · View at Google Scholar
  19. K. D. Snell, V. Singh, and S. M. Brumbley, “Production of novel biopolymers in plants: recent technological advances and future prospects,” Current Opinion in Biotechnology, vol. 32, pp. 68–75, 2015. View at Publisher · View at Google Scholar
  20. A. Narayanan and K. V. Ramana, “Polyhydroxybutyrate production in Bacillus mycoides DFC1 using response surface optimization for physico-chemical process parameters,” 3 Biotech, vol. 2, no. 4, pp. 287–296, 2012. View at Publisher · View at Google Scholar
  21. J. M. Naranjo, J. C. Higuita Vásquez, and C. A. Cardona, Producción de Polihidroxibutirato a Partir de Residuos Agroindustriales, Universidad Nacional de Colombia-Sede Manizales, 2010.
  22. A. D. Tripathi, S. K. Srivastava, and R. P. Singh, “Statistical optimization of physical process variables for bio-plastic (PHB) production by Alcaligenes sp.,” Biomass and Bioenergy, vol. 55, pp. 243–250, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Salazar, Parámetros Operacionales Óptimos Para La Producción de Bioplásticos a Partir de Fuentes Renovables Azucaradas, Universidad Nacional de Colombia-Sede Medellín, 2011.
  24. A. A. Pantazaki, C. P. Papaneophytou, A. G. Pritsa, M. Liakopoulou-Kyriakides, and D. A. Kyriakidis, “Production of polyhydroxyalkanoates from whey by Thermus thermophilus HB8,” Process Biochemistry, vol. 44, no. 8, pp. 847–853, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Tian, K. Hong, G.-Q. Chen, Q. Wu, R.-Q. Zhang, and W. Huang, “Production of polyesters consisting of medium chain length 3-hydroxyalkanoic acids by Pseudomonas mendocina 0806 from various carbon sources,” Antonie van Leeuwenhoek, vol. 77, no. 1, pp. 31–36, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. K.-S. Ng, W.-Y. Ooi, L.-K. Goh, R. Shenbagarathai, and K. Sudesh, “Evaluation of jatropha oil to produce poly(3-hydroxybutyrate) by Cupriavidus necator H16,” Polymer Degradation and Stability, vol. 95, no. 8, pp. 1365–1369, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Nath, M. Dixit, A. Bandiya, S. Chavda, and A. J. Desai, “Enhanced PHB production and scale up studies using cheese whey in fed batch culture of Methylobacterium sp. ZP24,” Bioresource Technology, vol. 99, no. 13, pp. 5749–5755, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S. A. Sánchez Moreno, M. A. Marín Montoya, A. L. Mora Martínez, and M. del S Yepes, “Identificación de bacterias productoras de polihidroxialcanoatos (PHAs) en suelos contaminados con desechos de fique,” Revista Colombiana de Biotecnología, vol. 14, no. 2, pp. 89–100, 2012. View at Google Scholar
  29. A. C. Cardona, A. Mora, and M. Marín, “Molecular identification of polyhydroxyalkanoate-producing bacteria isolated from dairy and sugarcane residues,” Revista Facultad Nacional de Agronomía, vol. 66, no. 2, pp. 7129–7140, 2013. View at Google Scholar
  30. R. O. Montenegro and S. Magnitskiy, “Effect of nitrogen and potassium fertilization on the production and quality of oil in Jatropha curcas L. under the dry and warm climate conditions of Colombia,” Agronomia Colombiana, vol. 32, no. 2, pp. 255–265, 2014. View at Publisher · View at Google Scholar · View at Scopus
  31. I. Sánchez and K. Huertas, “Obtención y caracterización de biodiesel a partir de aceite de semillas de Ricinus communis. (Higuerilla) modificadas géneticamente y cultivadas en el Eje Cafetero,” Tech. Rep., Universidad Tecnológica de Pereira, 2012. View at Google Scholar
  32. S. Cardona, R. González, A. Franco, F. Cardeño, and L. Ríos, “Production of monoglycerides from castor oil using crude and refined glycerin. Study of the main variables of the process,” Vitae, Revista de la Facultad de Química Farmacéutica, vol. 17, no. 2, pp. 128–134, 2010. View at Google Scholar
  33. H. Sanli, M. Canakci, and E. Alptekin, “Characterization of waste frying oils obtained from different facilities,” in Proceedings of the World Renewable Energy Congress, pp. 479–485, Linköping, Sweden, May 2011.
  34. S. Obruca, I. Marova, S. Melusova, and L. Mravcova, “Production of polyhydroxyalkanoates from cheese whey employing Bacillus megaterium CCM 2037,” Annals of Microbiology, vol. 61, no. 4, pp. 947–953, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. S. C. Y. Lee, J. Il Choi, H. H. Wong et al., “Recent advances in polyhydroxyalkanoate production by bacterial fermentation: mini-review,” Process Biochemistry, vol. 25, no. 2, pp. 137–146, 2007. View at Google Scholar
  36. S. G. V. A. O. Costa, F. Lépine, S. Milot, E. Déziel, M. Nitschke, and J. Contiero, “Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa,” Journal of Industrial Microbiology and Biotechnology, vol. 36, no. 8, pp. 1063–1072, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Jacquel, C.-W. Lo, Y.-H. Wei, H.-S. Wu, and S. S. Wang, “Isolation and purification of bacterial poly(3-hydroxyalkanoates),” Biochemical Engineering Journal, vol. 39, no. 1, pp. 15–27, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. M. R. López-Cuellar, J. Alba-Flores, J. N. G. Rodríguez, and F. Pérez-Guevara, “Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source,” International Journal of Biological Macromolecules, vol. 48, no. 1, pp. 74–80, 2011. View at Publisher · View at Google Scholar · View at Scopus