Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2017 (2017), Article ID 5657271, 8 pages
https://doi.org/10.1155/2017/5657271
Research Article

Effects of Temperature and pH on Immobilized Laccase Activity in Conjugated Methacrylate-Acrylate Microspheres

1School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
2Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
3Center for Water Research and Analysis, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence should be addressed to Sharina Abu Hanifah; ym.ude.mku@anirahs

Received 12 July 2017; Revised 7 September 2017; Accepted 17 September 2017; Published 18 October 2017

Academic Editor: Matthias Schnabelrauch

Copyright © 2017 Siti Zulaikha Mazlan and Sharina Abu Hanifah. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Mohajershojaei, N. M. Mahmoodi, and A. Khosravi, “Immobilization of laccase enzyme onto titania nanoparticle and decolorization of dyes from single and binary systems,” Biotechnology and Bioprocess Engineering, vol. 20, no. 1, pp. 109–116, 2015. View at Publisher · View at Google Scholar · View at Scopus
  2. S. A. Hanifah, N. Hamzah, and L. Y. Heng, “Rapid synthesis of magnetic microspheres poly(Glycidyl Methacrylate-co-Styrene) by photopolymerization,” SAINS MALAYSIANA, vol. 42, no. 4, pp. 487–493, 2013. View at Google Scholar · View at Scopus
  3. G. Bayramoǧlu, S. Kiralp, M. Yilmaz, L. Toppare, and M. Y. Arica, “Covalent immobilization of chloroperoxidase onto magnetic beads: Catalytic properties and stability,” Biochemical Engineering Journal, vol. 38, no. 2, pp. 180–188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Danisman, S. Tan, Y. Kacar, and A. Ergene, “Covalent immobilization of invertase on microporous pHEMA-GMA membrane,” Food Chemistry, vol. 85, no. 3, pp. 461–466, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Brady and J. Jordaan, “Advances in enzyme immobilisation,” Biotechnology Letters, vol. 31, no. 11, pp. 1639–1650, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. P. Ling and L. Y. Heng, “A potentiometric formaldehyde biosensor based on immobilization of alcohol oxidase on acryloxysuccinimide-modified acrylic microspheres,” Sensors, vol. 10, no. 11, pp. 9963–9981, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Lu, M. Zhao, and Y. Wang, “Immobilization of laccase by alginate-chitosan microcapsules and its use in dye decolorization,” World Journal of Microbiology and Biotechnology, vol. 23, no. 2, pp. 159–166, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. R. K. Singh, M. K. Tiwari, R. Singh, and J.-K. Lee, “From protein engineering to immobilization: Promising strategies for the upgrade of industrial enzymes,” International Journal of Molecular Sciences, vol. 14, no. 1, pp. 1232–1277, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. T. M. D. S. Bezerra, J. C. Bassan, V. T. D. O. Santos, A. Ferraz, and R. Monti, “Covalent immobilization of laccase in green coconut fiber and use in clarification of apple juice,” Process Biochemistry, vol. 50, no. 3, pp. 378–387, 2015. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Durán, M. A. Rosa, A. D'Annibale, and L. Gianfreda, “Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: A review,” Enzyme and Microbial Technology, vol. 31, no. 7, pp. 907–931, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. L. M. P. Sampaio, J. Padrão, J. Faria et al., “Laccase immobilization on bacterial nanocellulose membranes: Antimicrobial, kinetic and stability properties,” Carbohydrate Polymers, vol. 145, pp. 1–12, 2016. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Jaiswal, V. P. Pandey, and U. N. Dwivedi, “Immobilization of papaya laccase in chitosan led to improved multipronged stability and dye discoloration,” International Journal of Biological Macromolecules, vol. 86, pp. 288–295, 2016. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Hou, G. Dong, Y. Ye, and V. Chen, “Laccase immobilization on titania nanoparticles and titania-functionalized membranes,” Journal of Membrane Science, vol. 452, pp. 229–240, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Misra, V. Kumar, N. K. Goel, and L. Varshney, “Laccase immobilization on radiation synthesized epoxy functionalized polyethersulfone beads and their application for degradation of acid dye,” Polymer (United Kingdom), vol. 55, no. 23, pp. 6017–6024, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Li, Y. Lou, Y. Wan, W. Wang, J. Yao, and B. Zhang, “Laccase immobilized onto poly(GMA-MAA) microspheres for p-benzenediol removal from wastewater,” Water Science and Technology, vol. 67, no. 10, pp. 2287–2293, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Gutiérrez-Sánchez, W. Jia, Y. Beyl et al., “Enhanced direct electron transfer between laccase and hierarchical carbon microfibers/carbon nanotubes composite electrodes. Comparison of three enzyme immobilization methods,” Electrochimica Acta, vol. 82, pp. 218–223, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Z. Mazlan and S. A. Hanifah, “Synthesis and effect of modification on methacylate - acrylate microspheres for Trametes versicolor laccase enzyme immobilization,” in Proceedings of the THE 2014 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium, pp. 263–268, Selangor, Malaysia, 2014. View at Publisher · View at Google Scholar
  18. G. Bayramoǧlu, B. Kaya, and M. Y. Arica, “Immobilization of Candida rugosa lipase onto spacer-arm attached poly(GMA-HEMA-EGDMA) microspheres,” Food Chemistry, vol. 92, no. 2, pp. 261–268, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Bayramoǧlu, B. Hazer, B. Altintaş, and M. Y. Arica, “Covalent immobilization of lipase onto amine functionalized polypropylene membrane and its application in green apple flavor (ethyl valerate) synthesis,” Process Biochemistry, vol. 46, no. 1, pp. 372–378, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Peper, I. Tsagkatakis, and E. Bakker, “Cross-linked dodecyl acrylate microspheres: Novel matrices for plasticizer-free optical ion sensing,” Analytica Chimica Acta, vol. 442, no. 1, pp. 25–33, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Publisher · View at Google Scholar · View at Scopus
  22. R. O. Cristóvão, S. C. Silvério, A. P. M. Tavares et al., “Green coconut fiber: A novel carrier for the immobilization of commercial laccase by covalent attachment for textile dyes decolourization,” World Journal of Microbiology and Biotechnology, vol. 28, no. 9, pp. 2827–2838, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Liu, Z. Zeng, G. Zeng et al., “Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds,” Bioresource Technology, vol. 115, pp. 21–26, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Chawla, R. Rawal, and C. S. Pundir, “Fabrication of polyphenol biosensor based on laccase immobilized on copper nanoparticles/chitosan/multiwalled carbon nanotubes/polyaniline-modified gold electrode,” Journal of Biotechnology, vol. 156, no. 1, pp. 39–45, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Abdullah, M. Ahmad, Y. H. Lee, N. Karuppiah, and H. Sidek, “An optical biosensor based on immobilization of lacease and MBTH in stacked films for the detection of catechol,” Sensors, vol. 7, no. 10, pp. 2238–2250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Vescovi, W. Kopp, J. M. Guisán, R. L. C. Giordano, A. A. Mendes, and P. W. Tardioli, “Improved catalytic properties of Candida antarctica lipase B multi-attached on tailor-made hydrophobic silica containing octyl and multifunctional amino- glutaraldehyde spacer arms,” Process Biochemistry, vol. 51, no. 12, pp. 2055–2066, 2016. View at Publisher · View at Google Scholar · View at Scopus
  27. H.-S. Wang, Q.-X. Pan, and G.-X. Wang, “A biosensor based on immobilization of horseradish peroxidase in chitosan matrix cross-linked with glyoxal for amperometric determination of hydrogen peroxide,” Sensors, vol. 5, no. 4-5, pp. 266–276, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Liu, Y. Guan, H. Liu, Z. Ma, Y. Yang, and X. Wu, “Preparation and characterization of magnetic polymer nanospheres with high protein binding capacity,” Journal of Magnetism and Magnetic Materials, vol. 293, no. 1, pp. 111–118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Ulianas, L. Y. Heng, and M. Ahmad, “A biosensor for urea from succinimide-modified acrylic microspheres based on reflectance transduction,” Sensors, vol. 11, no. 9, pp. 8323–8338, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Sadighi and M. A. Faramarzi, “Congo red decolorization by immobilized laccase through chitosan nanoparticles on the glass beads,” Journal of the Taiwan Institute of Chemical Engineers, vol. 44, no. 2, pp. 156–162, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Fatarella, D. Spinelli, M. Ruzzante, and R. Pogni, “Nylon 6 film and nanofiber carriers: Preparation and laccase immobilization performance,” Journal of Molecular Catalysis B: Enzymatic, vol. 102, pp. 41–47, 2014. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Sevilla, P. Valle-Vigón, P. Tartaj, and A. B. Fuertes, “Magnetically separable bimodal mesoporous carbons with a large capacity for the immobilization of biomolecules,” Carbon, vol. 47, no. 10, pp. 2519–2527, 2009. View at Publisher · View at Google Scholar · View at Scopus