Table of Contents Author Guidelines Submit a Manuscript
International Journal of Rheumatology
Volume 2011 (2011), Article ID 969012, 17 pages
http://dx.doi.org/10.1155/2011/969012
Review Article

Effects of Glucosamine and Chondroitin Sulfate on Cartilage Metabolism in OA: Outlook on Other Nutrient Partners Especially Omega-3 Fatty Acids

Department of Orthopedics, Trauma Surgery and Sports Medicine, Johanna-Etienne Hospital, 41462 Neuss, Germany

Received 7 April 2011; Revised 19 May 2011; Accepted 7 June 2011

Academic Editor: Sergio Jimenez

Copyright © 2011 Jörg Jerosch. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. T. Felson, “Developments in the clinical understanding of osteoarthritis,” Arthritis Research & Therapy, vol. 11, no. 1, article 203, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Samuels, S. Krasnokutsky, and B. Abramson, “Osteoarthritis: a tale of three tissues,” Bulletin of the NYU Hospital for Joint Diseases, vol. 66, no. 3, pp. 244–250, 2008. View at Google Scholar · View at Scopus
  3. M. B. Goldring and S. R. Goldring, “Osteoarthritis,” Journal of Cellular Physiology, vol. 213, no. 3, pp. 626–634, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Schneider, G. Schmitt, H. Mau, H. Schmitt, D. Sabo, and W. Richter, “Prevalence and correlates of osteoarthritis in Germany. Representative data from the First National Health Survey,” Orthopade, vol. 34, no. 8, pp. 782–790, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Krasnokutsky, J. Samuels, and S. B. Abramson, “Osteoarthritis in 2007,” Bulletin of the NYU Hospital for Joint Diseases, vol. 65, no. 3, pp. 222–228, 2007. View at Google Scholar · View at Scopus
  6. E. C. Huskisson, “Glucosamine and chondroitin for osteoarthritis,” Journal of International Medical Research, vol. 36, no. 6, pp. 1161–1179, 2008. View at Google Scholar · View at Scopus
  7. T. Aigner, J. Haag, J. Martin, and J. Buckwalter, “Osteoarthritis: aging of matrix and cells—going for a remedy,” Current Drug Targets, vol. 8, no. 2, pp. 325–331, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Dudhia, “Aggrecan, aging and assembly in articular cartilage,” Cellular and Molecular Life Sciences, vol. 62, no. 19-20, pp. 2241–2256, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Vaughan-Thomas, J. Dudhia, M. T. Bayliss, K. E. Kadler, and V. C. Duance, “Modification of the composition of articular cartilage collagen fibrils with increasing age,” Connective Tissue Research, vol. 49, no. 5, pp. 374–382, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. W. E. Horton Jr., P. Bennion, and L. Yang, “Cellular, molecular, and matrix changes in cartilage during aging and osteoarthritis,” Journal of Musculoskeletal Neuronal Interactions, vol. 6, no. 4, pp. 379–381, 2006. View at Google Scholar · View at Scopus
  11. N. Verzijl, J. DeGroot, Z. C. Ben et al., “Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis,” Arthritis & Rheumatism, vol. 46, no. 1, pp. 114–123, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Tanamas, F. S. Hanna, F. M. Cicuttini, A. E. Wluka, P. Berry, and D. M. Urquhart, “Does knee malalignment increase the risk of development and progression of knee osteoarthritis? A systematic review,” Arthritis & Rheumatism, vol. 61, no. 4, pp. 459–467, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. D. P. Guh, W. Zhang, N. Bansback et al., “The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis,” BMC Public Health, vol. 9, article 88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. T. D. Spector and A. J. MacGregor, “Risk factors for osteoarthritis: genetics,” Osteoarthritis and Cartilage, vol. 12, pp. S39–S44, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. F. M. Cicuttini and T. D. Spector, “Genetics of osteoarthritis,” Annals of the Rheumatic Diseases, vol. 55, no. 9, pp. 665–667, 1996. View at Google Scholar · View at Scopus
  16. T. D. Spector, F. Cicuttini, J. Baker, J. Loughlin, and D. Hart, “Genetic influences on osteoarthritis in women: a twin study,” British Medical Journal, vol. 312, no. 7036, pp. 940–944, 1996. View at Google Scholar · View at Scopus
  17. A. M. Valdes, J. Loughlin, K. M. Timms et al., “Genome-wide association scan Identifies a prostaglandin-endoperoxide synthase 2 variant Involved in risk of knee osteoarthritis,” American Journal of Human Genetics, vol. 82, no. 6, pp. 1231–1240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. A. M. Valdes, J. Loughlin, M. V. Oene et al., “Sex and ethnic differences in the association of ASPN, CALM1, COL2A1, COMP, and FRZB with genetic susceptibility to osteoarthritis of the knee,” Arthritis & Rheumatism, vol. 56, no. 1, pp. 137–146, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. E. Russell, K. H. Shivanna, N. M. Grosland, and D. R. Pedersen, “Cartilage contact pressure elevations in dysplastic hips: a chronic overload model,” Journal of Orthopaedic Surgery and Research, vol. 1, no. 1, article 6, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. N. A. Hadley, T. D. Brown, and S. L. Weinstein, “The effects of contact pressure elevations and aseptic necrosis on the long-term outcome of congenital hip dislocation,” Journal of Orthopaedic Research, vol. 8, no. 4, pp. 504–513, 1990. View at Google Scholar · View at Scopus
  21. T. A. Maxian, T. D. Brown, and S. L. Weinstein, “Chronic stress tolerance levels for human articular cartilage: two nonuniform contact models applied to long-term follow-up of CDH,” Journal of Biomechanics, vol. 28, no. 2, pp. 159–166, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Eckstein, M. Hudelmaier, and R. Putz, “The effects of exercise on human articular cartilage,” Journal of Anatomy, vol. 208, no. 4, pp. 491–512, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. A. M. Bhosale and J. B. Richardson, “Articular cartilage: structure, injuries and review of management,” British Medical Bulletin, vol. 87, no. 1, pp. 77–95, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Martel-Pelletier, C. Boileau, J. P. Pelletier, and P. J. Roughley, “Cartilage in normal and osteoarthritis conditions,” Best Practice and Research: Clinical Rheumatology, vol. 22, no. 2, pp. 351–384, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. E. B. Hunziker, T. M. Quinn, and H. J. Häuselmann, “Quantitative structural organization of normal adult human articular cartilage,” Osteoarthritis and Cartilage, vol. 10, no. 7, pp. 564–572, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. I. M. Khan, S. J. Gilbert, S. K. Singhrao, V. C. Duance, and C. W. Archer, “Cartilage integration: evaluation of the reasons for failure of integration during cartilage repair. A review,” European Cells and Materials, vol. 16, pp. 26–39, 2008. View at Google Scholar · View at Scopus
  27. O. Bruyere, K. Pavelka, L. C. Rovati et al., “Total joint replacement after glucosamine sulphate treatment in knee osteoarthritis: results of a mean 8-year observation of patients from two previous 3-year, randomised, placebo-controlled trials,” Osteoarthritis and Cartilage, vol. 16, no. 2, pp. 254–260, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. D. O. Clegg, D. J. Reda, C. L. Harris et al., “Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis,” The New England Journal of Medicine, vol. 354, no. 8, pp. 795–808, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Herrero-Beaumont, J. A. Ivorra, M. D. C. Trabado et al., “Glucosamine sulfate in the treatment of knee osteoarthritis symptoms: a randomized, double-blind, placebo-controlled study using acetaminophen as a side comparator,” Arthritis & Rheumatism, vol. 56, no. 2, pp. 555–567, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Y. Reginster, R. Deroisy, L. C. Rovati et al., “Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomised, placebo-controlled clinical trial,” The Lancet, vol. 357, no. 9252, pp. 251–256, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Pavelka, J. Gatterova, M. Olejarova et al., “Glucosamine sulfate use and delay of progression of knee osteoarthritis: a 3-year, randomized, placebo-controlled, double-blind study,” Archives of Internal Medicine, vol. 162, no. 18, pp. 2113–2123, 2002. View at Publisher · View at Google Scholar
  32. O. Bruyere, K. Pavelka, L. C. Rovati et al., “Glucosamine sulfate reduces osteoarthritis progression in postmenopausal women with knee osteoarthritis: evidence from two 3-year studies,” Menopause, vol. 11, no. 2, pp. 138–143, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. O. Bruyere, N. Burlet, P. D. Delmas et al., “Evaluation of symptomatic slow-acting drugs in osteoarthritis using the GRADE system,” BMC Musculoskeletal Disorders, vol. 9, article 165, 2008. View at Publisher · View at Google Scholar
  34. T. E. Towheed, L. Maxwell, T. P. Anastassiades et al., “Glucosamine therapy for treating osteoarthritis,” Cochrane Database of Systematic Reviews, no. 2, 2005. View at Google Scholar · View at Scopus
  35. S. C. Vlad, M. P. LaValley, T. E. McAlindon, and D. T. Felson, “Glucosamine for pain in osteoarthritis: why do trial results differ?” Arthritis & Rheumatism, vol. 56, no. 7, pp. 2267–2277, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Y. Reginster, “The efficacy of glucosamine sulfate in osteoarthritis: financial and nonfinancial conflict of interest,” Arthritis & Rheumatism, vol. 56, no. 7, pp. 2105–2110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Richy, O. Bruyere, O. Ethgen et al., “Structural and symptomatic efficacy of glucosamine and chondroitin in knee osteoarthritis: a comprehensive meta-analysis,” Archives of Internal Medicine, vol. 163, no. 13, pp. 1514–1522, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Poolsup, C. Suthisisang, P. Channark, and W. Kittikulsuth, “Glucosamine long-term treatment and the progression of knee osteoarthritis: systematic review of randomized controlled trials,” Annals of Pharmacotherapy, vol. 39, no. 6, pp. 1080–1087, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Uebelhart, “Clinical review of chondroitin sulfate in osteoarthritis,” Osteoarthritis and Cartilage, vol. 16, no. 3, pp. S19–S21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. H. Lee, J. H. Woo, S. J. Choi, J. D. Ji, and G. G. Song, “Effect of glucosamine or chondroitin sulfate on the osteoarthritis progression: a meta-analysis,” Rheumatology International, vol. 30, no. 3, pp. 357–363, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. M. C. Hochberg, M. Zhan, and P. Langenberg, “The rate of decline of joint space width in patients withosteoarthritis of the knee: a systematic review and meta-analysis of randomized placebo-controlled trials of chondroitin sulfate,” Current Medical Research and Opinion, vol. 24, no. 11, pp. 3029–3035, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Kahan, D. Uebelhart, F. De Vathaire, P. D. Delmas, and J. Y. Reginster, “Long-term effects of chondroitins 4 and 6 sulfate on knee osteoarthritis: the study on osteoarthritis progression prevention, a two-year, randomized, double-blind, placebo-controlled trial,” Arthritis & Rheumatism, vol. 60, no. 2, pp. 524–533, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. B. A. Michel, G. Stucki, D. Frey et al., “Chondroitins 4 and 6 sulfate in osteoarthritis of the knee: a randomized, controlled trial,” Arthritis & Rheumatism, vol. 52, no. 3, pp. 779–786, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Dahmer and R. M. Schiller, “Glucosamine,” American Family Physician, vol. 78, no. 4, pp. 471–476, 2008. View at Google Scholar · View at Scopus
  45. S. G. Kirkham and R. K. Samarasinghe, “Review article: giucosamine,” Journal of Orthopaedic Surgery (Hong Kong), vol. 17, no. 1, pp. 72–76, 2009. View at Google Scholar · View at Scopus
  46. P. J. Gregory, M. Sperry, and A. F. Wilson, “Dietary supplements for osteoarthritis,” American Family Physician, vol. 77, no. 2, pp. 177–184, 2008. View at Google Scholar · View at Scopus
  47. O. Bruyere and J. Y. Reginster, “Glucosamine and chondroitin sulfate as therapeutic agents for knee and hip osteoarthritis,” Drugs & Aging, vol. 24, no. 7, pp. 573–580, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Y. Reginster, O. Bruyere, and A. Neuprez, “Current role of glucosamine in the treatment of osteoarthritis,” Rheumatology, vol. 46, no. 5, pp. 731–735, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. D. D. Edelist and M. F. Evans, “Do glucosamine and chondroitin treat the symptoms of osteoarthritis?” Canadian Family Physician, vol. 47, pp. 275–277, 2001. View at Google Scholar · View at Scopus
  50. T. E. McAlindon, M. P. LaValley, J. P. Gulin, and D. T. Felson, “Glucosamine and chondroitin for treatment of osteoarthritis: a systematic quality assessment and meta-analysis,” Journal of the American Medical Association, vol. 283, no. 11, pp. 1469–1475, 2000. View at Google Scholar · View at Scopus
  51. J. A. Block, T. R. Oegema, J. D. Sandy, and A. Plaas, “The effects of oral glucosamine on joint health: is a change in research approach needed?” Osteoarthritis and Cartilage, vol. 18, no. 1, pp. 5–11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Laverty, J. D. Sandy, C. Celeste, P. Vachon, J. F. Marier, and A. H. Plaas, “Synovial fluid levels and serum pharmacokinetics in a large animal model following treatment with oral glucosamine at clinically relevant doses,” Arthritis & Rheumatism, vol. 52, no. 1, pp. 181–191, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. T. E. Towheed and T. Anastassiades, “Glucosamine therapy for osteoarthritis: an update,” The Journal of Rheumatology, vol. 34, no. 9, pp. 1787–1790, 2007. View at Google Scholar · View at Scopus
  54. S. Varghese, P. Theprungsirikul, S. Sahani et al., “Glucosamine modulates chondrocyte proliferation, matrix synthesis, and gene expression,” Osteoarthritis and Cartilage, vol. 15, no. 1, pp. 59–68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Lippiello, “Collagen synthesis in tenocytes, ligament cells and chondrocytes exposed to a combination of glucosamine HCl and chondroitin sulfate,” Evidence-Based Complementary and Alternative Medicine, vol. 4, no. 2, pp. 219–224, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. E. J. Uitterlinden, J. L. Koevoet, C. F. Verkoelen et al., “Glucosamine increases hyaluronic acid production in human osteoarthritic synovium explants,” BMC Musculoskeletal Disorders, vol. 9, article 120, 2008. View at Publisher · View at Google Scholar
  57. M. L. Tiku, H. Narla, M. Jain, and P. Yalamanchili, “Glucosamine prevents in vitro collagen degradation in chondrocytes by inhibiting advanced lipoxidation reactions and protein oxidation,” Arthritis Research & Therapy, vol. 9, no. 4, article R76, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Derfoul, A. D. Miyoshi, D. E. Freeman, and R. S. Tuan, “Glucosamine promotes chondrogenic phenotype in both chondrocytes and mesenchymal stem cells and inhibits MMP-13 expression and matrix degradation,” Osteoarthritis and Cartilage, vol. 15, no. 6, pp. 646–655, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. G. R. Dodge and S. A. Jimenez, “Glucosamine sulfate modulates the levels of aggrecan and matrix metalloproteinase-3 synthesized by cultured human osteoarthritis articular chondrocytes,” Osteoarthritis and Cartilage, vol. 11, no. 6, pp. 424–432, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. J. D. Sandy, D. Gamett, V. Thompson, and C. Verscharen, “Chondrocyte-mediated catabolism of aggrecan: aggrecanase-dependent cleavage induced by interleukin-1 or retinoic acid can be inhibited by glucosamine,” The Biochemical Journal, vol. 335, no. 1, pp. 59–66, 1998. View at Google Scholar · View at Scopus
  61. R. M. Rozendaal, B. W. Koes, G. J. van Osch et al., “Effect of glucosamine sulfate on hip osteoarthritis: a randomized trial,” Annals of Internal Medicine, vol. 148, no. 4, pp. 268–277, 2008. View at Google Scholar · View at Scopus
  62. R. M. Rozendaal, E. J. Uitterlinden, G. J. van Osch et al., “Effect of glucosamine sulphate on joint space narrowing, pain and function in patients with hip osteoarthritis; subgroup analyses of a randomized controlled trial,” Osteoarthritis and Cartilage, vol. 17, no. 4, pp. 427–432, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. G. X. Qiu, S. N. Gao, G. Giacovelli et al., “Efficacy and safety of glucosamine sulfate versus ibuprofen in patients with knee osteoarthritis,” Arzneimittel-Forschung, vol. 48, no. 5, pp. 469–474, 1998. View at Google Scholar · View at Scopus
  64. A. Moore, S. Derry, and H. McQuay, “Differing results of trials of glucosamine for pain in arthritis: comment on the article by Vlad et al,” Arthritis & Rheumatism, vol. 58, no. 1, pp. 332–333, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. R. A. Greenwald, “Marginal efficacy of glucosamine: comment on the article by Vlad et al and the editorial by Reginster,” Arthritis & Rheumatism, vol. 58, no. 1, p. 332, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. K. M. Jordan, N. K. Arden, M. Doherty et al., “EULAR Recommendations 2003: an evidence based approach to the management of knee osteoarthritis: report of a task force of the standing committee for international clinical studies including therapeutic trials (ESCISIT),” Annals of the Rheumatic Diseases, vol. 62, no. 12, pp. 1145–1155, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. D. Uebelhart, M. Malaise, R. Marcolongo et al., “Intermittent treatment of knee osteoarthritis with oral chondroitin sulfate: a one-year, randomized, double-blind, multicenter study versus placebo,” Osteoarthritis and Cartilage, vol. 12, no. 4, pp. 269–276, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. D. Uebelhart, E. J. Thonar, P. D. Delmas, A. Chantraine, and E. Vignon, “Effects of oral chondroitin sulfate on the progression of knee osteoarthritis: a pilot study,” Osteoarthritis and Cartilage, vol. 6, pp. 39–46, 1998. View at Google Scholar · View at Scopus
  69. “Natural Standard Chondroitin sulfate,” Natural Standard Monographs, 2007.
  70. B. F. Leeb, H. Schweitzer, K. Montag, and J. S. Smolen, “A metaanalysis of chondroitin sulfate in the treatment of osteoarthritis,” The Journal of Rheumatology, vol. 27, no. 1, pp. 205–211, 2000. View at Google Scholar · View at Scopus
  71. J. N. Hathcock and A. Shao, “Risk assessment for glucosamine and chondroitin sulfate,” Regulatory Toxicology and Pharmacology, vol. 47, no. 1, pp. 78–83, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. A. D. Sawitzke, H. Shi, M. F. Finco et al., “The effect of glucosamine and/or chondroitin sulfate on the progression of knee osteoarthritis: a report from the glucosamine/chondroitin arthritis intervention trial,” Arthritis & Rheumatism, vol. 58, no. 10, pp. 3183–3191, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Das Jr. and T. A. Hammad, “Efficacy of a combination of FCHG49 glucosamine hydrochloride, TRH122 low molecular weight sodium chondroitin sulfate and manganese ascorbate in the management of knee osteoarthritis,” Osteoarthritis and Cartilage, vol. 8, no. 5, pp. 343–350, 2000. View at Publisher · View at Google Scholar · View at Scopus
  74. M. C. Hochberg and D. O. Clegg, “Potential effects of chondroitin sulfate on joint swelling: a GAIT report,” Osteoarthritis and Cartilage, vol. 16, supplement 3, pp. S22–S24, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Collier and P. Ghosh, “Evaluation of the effects of antiarthritic drugs on the secretion of proteoglycans by lapine chondrocytes using a novel assay procedure,” Annals of the Rheumatic Diseases, vol. 48, no. 5, pp. 372–381, 1989. View at Google Scholar · View at Scopus
  76. L. Lippiello, “Glucosamine and chondroitin sulfate: biological response modifiers of chondrocytes under simulated conditions of joint stress,” Osteoarthritis and Cartilage, vol. 11, no. 5, pp. 335–342, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. M. W. Orth, T. L. Peters, and J. N. Hawkins, “Inhibition of articular cartilage degradation by glucosamine-HCl and chondroitin sulphate,” Equine Veterinary Journal Supplement, no. 34, pp. 224–229, 2002. View at Google Scholar · View at Scopus
  78. M. F. McCarty, A. L. Russell, and M. P. Seed, “Sulfated glycosaminsglycan and glucosamine may synergize in promoting synovial hyaluronic acid synthesis,” Medical Hypotheses, vol. 54, no. 5, pp. 798–802, 2000. View at Publisher · View at Google Scholar · View at Scopus
  79. M. David-Raoudi, B. Deschrevel, S. Leclercq et al., “Chondroitin sulfate increases hyaluronan production by human synoviocytes through differential regulation of hyaluronan synthases: role of p38 and Akt,” Arthritis & Rheumatism, vol. 60, no. 3, pp. 760–770, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. N. Volpi, “Oral bioavailability of chondroitin sulfate (Condrosulf) and its constituents in healthy male volunteers,” Osteoarthritis and Cartilage, vol. 10, no. 10, pp. 768–777, 2002. View at Publisher · View at Google Scholar · View at Scopus
  81. L. Palmieri, A. Conte, L. Giovannini, P. Lualdi, and G. Ronca, “Metabolic fate of exogenous chondroitin sulfate in the experimental animal,” Arzneimittel-Forschung, vol. 40, no. 3, pp. 319–323, 1990. View at Google Scholar · View at Scopus
  82. C. G. Jackson, A. H. Plaas, J. D. Sandy et al., “The human pharmacokinetics of oral ingestion of glucosamine and chondroitin sulfate taken separately or in combination,” Osteoarthritis and Cartilage, vol. 19, no. 3, pp. 297–302, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. L. Balogh, A. Polyak, D. Mathe et al., “Absorption, uptake and tissue affinity of high-molecular-weight hyaluronan after oral administration in rats and dogs,” Journal of Agricultural and Food Chemistry, vol. 56, no. 22, pp. 10582–10593, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. D. S. Kalman, M. Heimer, A. Valdeon, H. Schwartz, and E. Sheldon, “Effect of a natural extract of chicken combs with a high content of hyaluronic acid (Hyal-Joint) on pain relief and quality of life in subjects with knee osteoarthritis: a pilot randomized double-blind placebo-controlled trial,” Nutrition Journal, vol. 7, no. 1, article 3, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. K. L. Clark, W. Sebastianelli, K. R. Flechsenhar et al., “24-Week study on the use of collagen hydrolysate as a dietary supplement in athletes with activity-related joint pain,” Current Medical Research and Opinion, vol. 24, no. 5, pp. 1485–1496, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. P. Benito-Ruiz, M. M. Camacho-Zambrano, J. N. Carrillo-Arcentales et al., “A randomized controlled trial on the efficacy and safety of a food ingredient, collagen hydrolysate, for improving joint comfort,” International Journal of Food Sciences and Nutrition, vol. 60, supplement 2, pp. 99–113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. J. P. Pelletier, J. Martel-Pelletier, and S. B. Abramson, “Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets,” Arthritis & Rheumatism, vol. 44, no. 6, pp. 1237–1247, 2001. View at Publisher · View at Google Scholar · View at Scopus
  88. T. Saxne, M. Lindell, B. Mansson, I. F. Petersson, and D. Heinegard, “Inflammation is a feature of the disease process in early knee joint osteoarthritis,” Rheumatology, vol. 42, no. 7, pp. 903–904, 2003. View at Publisher · View at Google Scholar
  89. M. J. Benito, D. J. Veale, O. FitzGerald, W. B. van den Berg, and B. Bresnihan, “Synovial tissue inflammation in early and late osteoarthritis,” Annals of the Rheumatic Diseases, vol. 64, no. 9, pp. 1263–1267, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. J. A. Martin, T. D. Brown, A. D. Heiner, and J. A. Buckwalter, “Chondrocyte senescence, joint loading and osteoarthritis,” Clinical Orthopaedics and Related Research, no. 427, supplement, pp. S96–S103, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. K. Yudoh, V. T. Nguyen, H. Nakamura et al., “Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function,” Arthritis Research & Therapy, vol. 7, no. 2, pp. R380–391, 2005. View at Google Scholar · View at Scopus
  92. O. Altindag, O. Erel, N. Aksoy et al., “Increased oxidative stress and its relation with collagen metabolism in knee osteoarthritis,” Rheumatology International, vol. 27, no. 4, pp. 339–344, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. K. M. Surapaneni and G. Venkataramana, “Status of lipid peroxidation, glutathione, ascorbic acid, vitamin E and antioxidant enzymes in patients with osteoarthritis,” Indian Journal of Medical Sciences, vol. 61, no. 1, pp. 9–14, 2007. View at Google Scholar · View at Scopus
  94. C. Ding, F. Cicuttini, F. Scott, H. Cooley, and G. Jones, “Knee structural alteration and BMI: a cross-sectional study,” Obesity Research, vol. 13, no. 2, pp. 350–361, 2005. View at Google Scholar · View at Scopus
  95. M. Reijman, H. A. Pols, A. P. Bergink et al., “Body mass index associated with onset and progression of osteoarthritis of the knee but not of the hip: the Rotterdam study,” Annals of the Rheumatic Diseases, vol. 66, no. 2, pp. 158–162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. A. Anandacoomarasamy, M. Fransen, and L. March, “Obesity and the musculoskeletal system,” Current Opinion in Rheumatology, vol. 21, no. 1, pp. 71–77, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. D. J. Hart and T. D. Spector, “The relationship of obesity, fat distribution and osteoarthritis in women in the general population: the Chingford study,” The Journal of Rheumatology, vol. 20, no. 2, pp. 331–335, 1993. View at Google Scholar · View at Scopus
  98. K. Masuko, M. Murata, N. Suematsu et al., “A metabolic aspect of osteoarthritis: lipid as a possible contributor to the pathogenesis of cartilage degradation,” Clinical and Experimental Rheumatology, vol. 27, no. 2, pp. 347–353, 2009. View at Google Scholar · View at Scopus
  99. R. Gomez, F. Lago, J. Gomez-Reino, C. Dieguez, and O. Gualillo, “Adipokines in the skeleton: influence on cartilage function and joint degenerative diseases,” Journal of Molecular Endocrinology, vol. 43, no. 1, pp. 11–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. S. P. Messier, “Obesity and osteoarthritis: disease genesis and nonpharmacologic weight management,” Rheumatic Disease Clinics of North America, vol. 34, no. 3, pp. 713–729, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. F. Lago, C. Dieguez, J. Gomez-Reino, and O. Gualillo, “Adipokines as emerging mediators of immune response and inflammation,” Nature Clinical Practice Rheumatology, vol. 3, no. 12, pp. 716–724, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. F. Iannone and G. Lapadula, “Obesity and inflammation—targets for OA therapy,” Current Drug Targets, vol. 11, no. 5, pp. 586–598, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. P. Pottie, N. Presle, B. Terlain et al., “Obesity and osteoarthritis: more complex than predicted!,” Annals of the Rheumatic Diseases, vol. 65, no. 11, pp. 1403–1405, 2006. View at Publisher · View at Google Scholar · View at Scopus
  104. H. Dumond, N. Presle, B. Terlain et al., “Evidence for a key role of leptin in osteoarthritis,” Arthritis & Rheumatism, vol. 48, no. 11, pp. 3118–3129, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. R. M. Aspden, B. A. Scheven, and J. D. Hutchison, “Osteoarthritis as a systemic disorder including stromal cell differentiation and lipid metabolism,” The Lancet, vol. 357, no. 9262, pp. 1118–1120, 2001. View at Publisher · View at Google Scholar · View at Scopus
  106. D. Lajeunesse, J. P. Pelletier, and J. Martel-Pelletier, “Osteoarthritis: a metabolic disease induced by local abnormal leptin activity?” Current Rheumatology Reports, vol. 7, no. 2, pp. 79–81, 2005. View at Google Scholar · View at Scopus
  107. Y. Figenschau, G. Knutsen, S. Shahazeydi, O. Johansen, and B. Sveinbjörnsson, “Human articular chondrocytes express functional leptin receptors,” Biochemical and Biophysical Research Communications, vol. 287, no. 1, pp. 190–197, 2001. View at Publisher · View at Google Scholar · View at Scopus
  108. E. N. Blaney Davidson, P. M. van der Kraan, and W. B. van den Berg, “TGF-beta and osteoarthritis,” Osteoarthritis and Cartilage, vol. 15, no. 6, pp. 597–604, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. K. Vuolteenaho, A. Koskinen, M. Kukkonen et al., “Leptin enhances synthesis of proinflammatory mediators in human osteoarthritic cartilage-mediator role of NO in leptin-induced PGE 2, IL-6, and IL-8 production,” Mediators of Inflammation, vol. 2009, article 345838, 2009. View at Publisher · View at Google Scholar
  110. F. Kojima, H. Naraba, S. Miyamoto et al., “Membrane-associated prostaglandin E synthase-1 is upregulated by proinflammatory cytokines in chondrocytes from patients with osteoarthritis,” Arthritis Research & Therapy, vol. 6, no. 4, pp. R355–T365, 2004. View at Google Scholar · View at Scopus
  111. K. Notoya, D. V. Jovanovic, P. Reboul et al., “The induction of cell death in human osteoarthritis chondrocytes by nitric oxide is related to the production of prostaglandin E2 via the induction of cyclooxygenase-2,” Journal of Immunology, vol. 165, no. 6, pp. 3402–3410, 2000. View at Google Scholar · View at Scopus
  112. M. Otero, R. Lago, F. Lago, J. J. Reino, and O. Gualillo, “Signalling pathway involved in nitric oxide synthase type II activation in chondrocytes: synergistic effect of leptin with interleukin-1,” Arthritis Research & Therapy, vol. 7, no. 3, pp. R581–R591, 2005. View at Google Scholar · View at Scopus
  113. S. J. Kim, J. W. Ju, C. D. Oh et al., “ERK-1/2 and p38 kinase oppositely regulate nitric oxide-induced apoptosis of chondrocytes in association with p53, caspase-3, and differentiation status,” The Journal of Biological Chemistry, vol. 277, no. 2, pp. 1332–1339, 2002. View at Publisher · View at Google Scholar · View at Scopus
  114. K. Sasaki, T. Hattori, T. Fujisawa et al., “Nitric oxide mediates interleukin-1-induced gene expression of matrix metalloproteinases and basic fibroblast growth factor in cultured rabbit articular chondrocytes,” Journal of Biochemistry, vol. 123, no. 3, pp. 431–439, 1998. View at Google Scholar · View at Scopus
  115. P. S. Burrage, K. S. Mix, and C. E. Brinckerhoff, “Matrix metalloproteinases: role in arthritis,” Frontiers in Bioscience, vol. 11, no. 1, pp. 529–543, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. T. Simopoulou, K. N. Malizos, D. Iliopoulos et al., “Differential expression of leptin and leptin's receptor isoform (Ob-Rb) mRNA between advanced and minimally affected osteoarthritic cartilage; effect on cartilage metabolism,” Osteoarthritis and Cartilage, vol. 15, no. 8, pp. 872–883, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. D. Iliopoulos, K. N. Malizos, and A. Tsezou, “Epigenetic regulation of leptin affects MMP-13 expression in osteoarthritic chondrocytes: possible molecular target for osteoarthritis therapeutic intervention,” Annals of the Rheumatic Diseases, vol. 66, no. 12, pp. 1616–1621, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. H. Nagaset and J. F. Woessner Jr., “Matrix metalloproteinases,” The Journal of Biological Chemistry, vol. 274, no. 31, pp. 21491–21494, 1999. View at Publisher · View at Google Scholar · View at Scopus
  119. M. Gosset, F. Berenbaum, A. Levy et al., “Prostaglandin E2 synthesis in cartilage explants under compression: mPGES-1 is a mechanosensitive gene,” Arthritis Research & Therapy, vol. 8, no. 4, article R135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. J. I. Pulai, H. Chen, H. J. Im et al., “NF-kappa B mediates the stimulation of cytokine and chemokine expression by human articular chondrocytes in response to fibronectin fragments,” Journal of Immunology, vol. 174, no. 9, pp. 5781–5788, 2005. View at Google Scholar · View at Scopus
  121. L. Ding, D. Guo, and G. A. Homandberg, “Fibronectin fragments mediate matrix metalloproteinase upregulation and cartilage damage through proline rich tyrosine kinase 2, c-src, NF-kappaB and protein kinase Cdelta,” Osteoarthritis and Cartilage, vol. 17, no. 10, pp. 1385–1392, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. G. A. Homandberg, R. Meyers, and D. L. Xie, “Fibronectin fragments cause chondrolysis of bovine articular cartilage slices in culture,” The Journal of Biological Chemistry, vol. 267, no. 6, pp. 3597–3604, 1992. View at Google Scholar · View at Scopus
  123. W. Wu, R. C. Billinghurst, I. Pidoux et al., “Sites of collagenase cleavage and denaturation of type II collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase 13,” Arthritis & Rheumatism, vol. 46, no. 8, pp. 2087–2094, 2002. View at Publisher · View at Google Scholar · View at Scopus
  124. L. Xu, H. Peng, S. Glasson et al., “Increased expression of the collagen receptor discoidin domain receptor 2 in articular cartilage as a key event in the pathogenesis of osteoarthritis,” Arthritis & Rheumatism, vol. 56, no. 8, pp. 2663–2673, 2007. View at Publisher · View at Google Scholar · View at Scopus
  125. A. J. Fosang, F. M. Rogerson, C. J. East, and H. Stanton, “ADAMTS-5: the story so far,” European Cells & Materials, vol. 15, pp. 11–26, 2008. View at Google Scholar · View at Scopus
  126. J. Gruenwald, E. Petzold, R. Busch, H. P. Petzold, and H. J. Graubaum, “Effect of glucosamine sulfate with or without omega-3 fatty acids in patients with osteoarthritis,” Advances in Therapy, vol. 26, no. 9, pp. 858–871, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. A. Ströhle and T. Schneiders, “Nutritional medical aspects of osteoarthritis therapy,” in Management of Osteoarthritis, J. Jerosch and J. Heisel, Eds., pp. 41–57, Deutscher Ärzte-Verlag, Köln, Germany, 2010. View at Google Scholar
  128. P. S. Chan, J. P. Caron, and M. W. Orth, “Short-term gene expression changes in cartilage explants stimulated with interleukin beta plus glucosamine and chondroitin sulfate,” The Journal of Rheumatology, vol. 33, no. 7, pp. 1329–1340, 2006. View at Google Scholar · View at Scopus
  129. P. S. Chan, J. P. Caron, G. J. Rosa, and M. W. Orth, “Glucosamine and chondroitin sulfate regulate gene expression and synthesis of nitric oxide and prostaglandin E2 in articular cartilage explants,” Osteoarthritis and Cartilage, vol. 13, no. 5, pp. 387–394, 2005. View at Publisher · View at Google Scholar · View at Scopus
  130. R. Largo, M. A. Alvarez-Soria, I. Diez-Ortego et al., “Glucosamine inhibits IL-1beta-induced NFkappaB activation in human osteoarthritic chondrocytes,” Osteoarthritis and Cartilage, vol. 11, no. 4, pp. 290–298, 2003. View at Publisher · View at Google Scholar
  131. J. N. Gouze, A. Bianchi, P. Becuwe et al., “Glucosamine modulates IL-1-induced activation of rat chondrocytes at a receptor level, and by inhibiting the NF-kappa B pathway,” FEBS Letters, vol. 510, no. 3, pp. 166–170, 2002. View at Publisher · View at Google Scholar · View at Scopus
  132. J. N. Gouze, K. Bordji, S. Gulberti et al., “Interleukin-1beta down-regulates the expression of glucuronosyltransferase I, a key enzyme priming glycosaminoglycan biosynthesis: influence of glucosamine on interleukin-1beta-mediated effects in rat chondrocytes,” Arthritis & Rheumatism, vol. 44, no. 2, pp. 351–360, 2001. View at Publisher · View at Google Scholar
  133. A. R. Shikhman, K. Kuhn, N. Alaaeddine, and M. Lotz, “N-acetylglucosamine prevents IL-1 beta-mediated activation of human chondrocytes,” Journal of Immunology, vol. 166, no. 8, pp. 5155–5160, 2001. View at Google Scholar · View at Scopus
  134. B. C. Jang, S. H. Sung, J. G. Park et al., “Glucosamine hydrochloride specifically inhibits COX-2 by preventing COX-2 N-glycosylation and by increasing COX-2 protein turnover in a proteasome-dependent manner,” Journal of Biological Chemistry, vol. 282, no. 38, pp. 27622–27632, 2007. View at Publisher · View at Google Scholar · View at Scopus
  135. P. du Souich, A. G. Garcia, J. Verges, and E. Montell, “Immunomodulatory and anti-inflammatory effects of chondroitin sulphate,” Journal of Cellular and Molecular Medicine, vol. 13, no. 8, pp. 1451–1463, 2009. View at Publisher · View at Google Scholar
  136. G. Herrero-Beaumont, M. E. Marcos, O. Sanchez-Pernaute et al., “Effect of chondroitin sulphate in a rabbit model of atherosclerosis aggravated by chronic arthritis,” British Journal of Pharmacology, vol. 154, no. 4, pp. 843–851, 2008. View at Publisher · View at Google Scholar · View at Scopus
  137. N. Rajapakse, E. Mendis, M. M. Kim, and S. K. Kim, “Sulfated glucosamine inhibits MMP-2 and MMP-9 expressions in human fibrosarcoma cells,” Bioorganic and Medicinal Chemistry, vol. 15, no. 14, pp. 4891–4896, 2007. View at Publisher · View at Google Scholar · View at Scopus
  138. C. Valvason, E. Musacchio, A. Pozzuoli et al., “Influence of glucosamine sulphate on oxidative stress in human osteoarthritic chondrocytes: effects on HO-1, p22Phox and iNOS expression,” Rheumatology, vol. 47, no. 1, pp. 31–35, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. G. M. Campo, A. Avenoso, S. Campo et al., “Glycosaminoglycans modulate inflammation and apoptosis in LPS-treated chondrocytes,” Journal of Cellular Biochemistry, vol. 106, no. 1, pp. 83–92, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. Y. E. Henrotin, P. Bruckner, and J. P. Pujol, “The role of reactive oxygen species in homeostasis and degradation of cartilage,” Osteoarthritis and Cartilage, vol. 11, no. 10, pp. 747–755, 2003. View at Publisher · View at Google Scholar · View at Scopus
  141. C. Ruiz-Romero, V. Calamia, J. Mateos et al., “Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance,” Molecular and Cellular Proteomics, vol. 8, no. 1, pp. 172–189, 2009. View at Publisher · View at Google Scholar · View at Scopus
  142. H. I. Roach, “The complex pathology of osteoarthritis: even mitochondria are involved,” Arthritis & Rheumatism, vol. 58, no. 8, pp. 2217–2218, 2008. View at Publisher · View at Google Scholar · View at Scopus
  143. Y. Wang, L. F. Prentice, L. Vitetta, A. E. Wluka, and F. M. Cicuttini, “The effect of nutritional supplements on osteoarthritis,” Alternative Medicine Review, vol. 9, no. 3, pp. 275–296, 2004. View at Google Scholar · View at Scopus
  144. L. G. Ameye and W. S. Chee, “Osteoarthritis and nutrition. From nutraceuticals to functional foods: a systematic review of the scientific evidence,” Arthritis Research & Therapy, vol. 8, no. 4, article R127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  145. A. G. Clark, A. L. Rohrbaugh, I. Otterness, and V. B. Kraus, “The effects of ascorbic acid on cartilage metabolism in guinea pig articular cartilage explants,” Matrix Biology, vol. 21, no. 2, pp. 175–184, 2002. View at Publisher · View at Google Scholar · View at Scopus
  146. T. E. McAlindon, P. Jacques, Y. Zhang et al., “Do antioxidant micronutrients protect against the development and progression of knee osteoarthritis?” Arthritis & Rheumatism, vol. 39, no. 4, pp. 648–656, 1996. View at Publisher · View at Google Scholar · View at Scopus
  147. Y. Z. Fang, S. Yang, and G. Wu, “Free radicals, antioxidants, and nutrition,” Nutrition, vol. 18, no. 10, pp. 872–879, 2002. View at Publisher · View at Google Scholar · View at Scopus
  148. S. Sasaki, H. Iwata, N. Ishiguro, O. Habuchi, and T. Miura, “Low-selenium diet, bone, and articular cartilage in rats,” Nutrition, vol. 10, no. 6, pp. 538–543, 1994. View at Google Scholar · View at Scopus
  149. J. Hill and H. A. Bird, “Failure of selenium-ACE to improve osteoarthritis,” British Journal of Rheumatology, vol. 29, no. 3, pp. 211–213, 1990. View at Google Scholar · View at Scopus
  150. H. Murad and P. Tabibian, “The effect of an oral supplement containing glucosamine, amino acids, minerals, and antioxidants on cutaneous aging: a preliminary study,” The Journal of Dermatological Treatment, vol. 12, no. 1, pp. 47–51, 2001. View at Publisher · View at Google Scholar · View at Scopus
  151. K. L. Rennie, J. Hughes, R. Lang, and S. A. Jebb, “Nutritional management of rheumatoid arthritis: a review of the evidence,” Journal of Human Nutrition and Dietetics, vol. 16, no. 2, pp. 97–109, 2003. View at Publisher · View at Google Scholar · View at Scopus
  152. J. M. Kremer, W. Jubiz, A. Michalek et al., “Fish-oil fatty acid supplementation in active rheumatoid arthritis. A double-blinded, controlled, crossover study,” Annals of Internal Medicine, vol. 106, no. 4, pp. 497–503, 1987. View at Google Scholar · View at Scopus
  153. H. van der Tempel, J. E. Tulleken, P. C. Limburg, F. A. Muskiet, and M. H. van Rijswijk, “Effects of fish oil supplementation in rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 49, no. 2, pp. 76–80, 1990. View at Google Scholar · View at Scopus
  154. B. Galarraga, M. Ho, H. M. Youssef et al., “Cod liver oil (n-3 fatty acids) as an non-steroidal anti-inflammatory drug sparing agent in rheumatoid arthritis,” Rheumatology, vol. 47, no. 5, pp. 665–669, 2008. View at Publisher · View at Google Scholar · View at Scopus
  155. K. D. Hankenson, B. A. Watkins, I. A. Schoenlein, K. G. Allen, and J. J. Turek, “Omega-3 fatty acids enhance ligament fibroblast collagen formation in association with changes in interleukin-6 production,” Proceedings of the Society for Experimental Biology and Medicine, vol. 223, no. 1, pp. 88–95, 2000. View at Google Scholar · View at Scopus
  156. L. Lippiello, M. Fienhold, and C. Grandjean, “Metabolic and ultrastructural changes in articular cartilage of rats fed dietary supplements of omega-3 fatty acids,” Arthritis & Rheumatism, vol. 33, no. 7, pp. 1029–1036, 1990. View at Publisher · View at Google Scholar · View at Scopus
  157. C. L. Curtis, S. G. Rees, C. B. Little et al., “Pathologic indicators of degradation and inflammation in human osteoarthritic cartilage are abrogated by exposure to n-3 fatty acids,” Arthritis & Rheumatism, vol. 46, no. 6, pp. 1544–1553, 2002. View at Publisher · View at Google Scholar · View at Scopus