Table of Contents Author Guidelines Submit a Manuscript
International Journal of Reconfigurable Computing
Volume 2008, Article ID 634306, 9 pages
Research Article

Design of a Mathematical Unit in FPGA for the Implementation of the Control of a Magnetic Levitation System

Departamento de Electrónica, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Boulevard Marcelino García Barragan 1421, Guadalajara, Jal. 44430, Mexico

Received 2 July 2008; Revised 9 October 2008; Accepted 30 October 2008

Academic Editor: Gustavo Sutter

Copyright © 2008 Juan José Raygoza-Panduro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Ortega-Cisneros, J. J. Raygoza-Panduro, J. Suardíaz Muro, and E. Boemo, “Rapid prototyping of a self-timed ALU with FPGAs,” in Proceedings of International Conference on Reconfigurable Computing and FPGAs (ReConFig '05), p. 8, Puebla City, Mexico, September 2005. View at Publisher · View at Google Scholar
  2. J. S. Walther, “A unified algorithm for elemetary functions,” in Proceedings of the AFIP Spring Joint Computer Conference (SJCC '71), vol. 38, pp. 379–385, AFIPS Press, Montvale, NJ, USA, 1971.
  3. F. Cardells-Tormo and J. Valls-Coquillat, “Optimisation of direct digital frequency synthesisers based on CORDIC,” Electronics Letters, vol. 37, no. 21, pp. 1278–1280, 2001. View at Publisher · View at Google Scholar
  4. T. C. Chen, “Automatic computation of exponentials, logarithms, ratios and square roots,” IBM Journal of Research and Development, vol. 16, no. 4, pp. 380–388, 1972. View at Google Scholar
  5. C.-S. Wu, A.-Y. Wu, and C.-H. Lin, “A high-performance/low-latency vector rotational CORDIC architecture based on extended elementary angle set and trellis-based searching schemes,” IEEE Transactions on Circuits and Systems II, vol. 50, no. 9, pp. 589–601, 2003. View at Publisher · View at Google Scholar
  6. H. Dawid and H. Meyr, “VLSI implementation of the CORDIC algorithm using redundant arithmetic,” in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '92), vol. 3, pp. 1089–1092, San Diego, Calif, USA, May 1992. View at Publisher · View at Google Scholar
  7. J. E. Volder, “The CORDIC trigonometric computing technique,” IRE Transactions on Electronic Computers, vol. EC-8, no. 3, pp. 330–334, 1959. View at Google Scholar
  8. Xilinx, 2007,
  9. M. Ono, Y. Sakuma, H. Adachi et al., “Train control characteristic and the function of the position detecting system at the Yamanasi Maglev test line,” in Proceedings of the 15th International Conference on Magnetically Levitated Systems and Linear Drives (MAGLEV '98), pp. 184–189, Mt. Fuji, Yamanashi, Japan, April 1998.
  10. V. I. Utkin, A. G. Loukianov, B. Castillo-Toledo, and J. Rivera, “Sliding mode regulator design,” in Variable Structure Systems: From Principles to Implementation, A. Sabanovic, L. Fridman, and S. Spurgeon, Eds., p. 1943, IEE, London, UK, 2004. View at Google Scholar
  11. P. Allaire and A. Sinha, “Robust sliding mode control of a planar rigid rotor system on magnetic bearings,” in Proceedings of the 6th International Symposium on Magnetic Bearings (ISMB '98), pp. 577–586, Boston, Mass, USA, August 1998.
  12. Hyung-Woo Lee, Ki-Chan Kim, and Ju Lee, “Review of maglev train technologies,” in IEEE Transactions on Magnetics, vol. 42, no. 7, pp. 1917–1925, 2006. View at Google Scholar
  13. R. J. M. Muscroft, D. B. Sims-Williams, and D. A. Cardwell, “The development of a passive magnetic levitation system for wind tunnel models,” SAE Transactions: Journal of Passenger Cars: Mechanical Systems, vol. 115, no. 6, pp. 415–419, 2006. View at Google Scholar
  14. K. Im and Y. Mochimaru, “Numerical analysis on magnetic levitation of liquid metals, using a spectral finite difference scheme,” Journal of Computational Physics, vol. 203, no. 1, pp. 112–128, 2005. View at Publisher · View at Google Scholar
  15. B. V. Jayawant and D. P. Rea, “New electromagnetic suspension and its stabilization,” Proceedings of the Institution of Electrical Engineers, vol. 115, no. 4, pp. 549–554, 1965. View at Google Scholar
  16. A. El Hajjaji and M. Ouladsine, “Modeling and nonlinear control of magnetic levitation systems,” IEEE Transactions on Industrial Electronics, vol. 48, no. 4, pp. 831–838, 2001. View at Publisher · View at Google Scholar
  17. W. Barie and J. Chiasson, “Linear and nonlinear state-space controllers for magnetic levitation,” International Journal of Systems Science, vol. 27, no. 11, pp. 1153–1163, 1996. View at Publisher · View at Google Scholar
  18. Z.-J. Yang, K. Kunitoshi, S. Kanae, and K. Wada, “Adaptive robust output-feedback control of a magnetic levitation system by K-filter approach,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 390–399, 2008. View at Publisher · View at Google Scholar
  19. F.-J. Lin, L.-T. Teng, and P.-H. Shieh, “Intelligent sliding-mode control using RBFN for magnetic levitation system,” IEEE Transactions on Industrial Electronics, vol. 54, no. 3, pp. 1752–1762, 2007. View at Publisher · View at Google Scholar
  20. A. Isidori and C. I. Byrnes, “Output regulation of nonlinear systems,” IEEE Transactions on Automatic Control, vol. 35, no. 2, pp. 131–140, 1990. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. B. Lu, X. Wu, H. Figueroa, and A. Monti, “A low-cost real-time hardware-in-the-loop testing approach of power electronics controls,” IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 919–931, 2007. View at Publisher · View at Google Scholar