Table of Contents Author Guidelines Submit a Manuscript
International Journal of Reconfigurable Computing
Volume 2008, Article ID 926851, 10 pages
http://dx.doi.org/10.1155/2008/926851
Research Article

Burst-Mode Asynchronous Controllers on FPGA

1Electronic Engineering Division, Aeronautics Institute of Technology, Praça Marechal Eduardo Gomes 50, 12228-900 São José dos Campos, SP, Brazil
2Microelectronic Laboratory, Polytechnic School, University of São Paulo, Avenida Prof. Luciano Gualberto, Trav 3, 158, 05508-900 São Paulo, SP, Brazil

Received 5 July 2008; Revised 8 October 2008; Accepted 30 October 2008

Academic Editor: Gustavo Sutter

Copyright © 2008 Duarte L. Oliveira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. J. Myers, Asynchronous Circuit Design, John Wiley & Sons, New York, NY, USA, 2001.
  2. S. Hauck, “Asynchronous design methodologies: an overview,” Proceedings of the IEEE, vol. 83, no. 1, pp. 69–93, 1995. View at Publisher · View at Google Scholar
  3. S. H. Unger, “Hazards, critical races, and metastability,” IEEE Transactions on Computers, vol. 44, no. 6, pp. 754–768, 1995. View at Google Scholar
  4. S. Hauck, S. Burns, G. Borriello, and C. Ebeling, “An FPGA for implementing asynchronous circuits,” IEEE Design & Test of Computers, vol. 11, no. 3, pp. 60–69, 1994. View at Publisher · View at Google Scholar
  5. D. M. Chapiro, Globally-asynchronous locally-synchronous systems, Ph.D. thesis, Stanford University, Stanford, Calif, USA, 1984.
  6. S. Burns and A. Martin, “Syntax-directed translation of concurrent programs into self-timed circuits,” in Proceedings of the 5th MIT Conference on Advanced Research in VLSI, J. Allen and T. Leighton, Eds., pp. 35–50, MIT Press, Cambridge, Mass, USA, March 1988.
  7. I. E. Sutherland, “Micropipelines,” Communications of ACM, vol. 32, no. 6, pp. 720–738, 1989. View at Publisher · View at Google Scholar
  8. T.-A. Chu, Synthesis of self-timed VLSI circuits from graph-theoretic specifications, Ph.D. thesis, Department of EECS, MIT, Cambridge, Mass, USA, June 1987.
  9. S. M. Nowick, K. Y. Yun, and D. L. Dill, “Practical asynchronous controller design,” in Proceedings of the IEEE International Conference on Computer Design (ICCD '92), pp. 341–345, Cambridge, Mass, USA, October 1992. View at Publisher · View at Google Scholar
  10. S. M. Nowick and B. Coates, “UCLOCK: automated design of high-performance unclocked state machines,” in Proceedings of the IEEE International Conference on Computer Design (ICCD '94), pp. 434–441, Cambridge, Mass, USA, October 1994. View at Publisher · View at Google Scholar
  11. S. M. Nowick, M. E. Dean, D. L. Dill, and M. Horowitz, “The design of a high-performance cache controller: a case study in asynchronous synthesis,” Integration, the VLSI Journal, vol. 15, no. 3, pp. 241–262, 1993. View at Publisher · View at Google Scholar
  12. A. Marshall, B. Coates, and F. Siegel, “Designing an asynchronous communications chip,” IEEE Design & Test of Computers, vol. 11, no. 2, pp. 8–21, 1994. View at Publisher · View at Google Scholar
  13. A. Davis, B. Coates, and K. Stevens, “Automatic synthesis of fast compact self-timed control circuits,” in Proceedings of the IFIP Working Conference on Asynchronous Design Methodologies, Manchester, UK, April 1993.
  14. E. Brunvand, “Using FPGAs to implement self-timed systems,” The Journal of VLSI Signal Processing, vol. 6, no. 2, pp. 173–190, 1993. View at Publisher · View at Google Scholar
  15. K. Maheswaran and V. Akella, “Hazard-free implementation of the self-timed cell set in a Xilinx FPGA,” Tech. Rep., University of California, Davis, Calif, USA, 1994. View at Google Scholar
  16. Y. Zafar and M. M. Ahmed, “A novel FPGA compliant micropipeline,” IEEE Transactions on Circuits and Systems II, vol. 52, no. 9, pp. 611–615, 2005. View at Publisher · View at Google Scholar
  17. A. Ejnioui, “FPGA prototyping of a two-phase self-oscillating micropipeline,” in Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI '07), pp. 437–438, Porto Alegre, Brazil, March 2007. View at Publisher · View at Google Scholar
  18. N. Huot, H. Dubreuil, L. Fesquet, and M. Renaudin, “FPGA architecture for multi-style asynchronous logic,” in Proceedings of the Conference on Design, Automation and Test in Europe (DATE '05), vol. 1, pp. 32–33, Munich, Germany, March 2005. View at Publisher · View at Google Scholar
  19. X. Jia and R. Vemuri, “The GAPLA: a globally asynchronous locally synchronous FPGA architecture,” in Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM '05), pp. 291–292, Napa, Calif, USA, April 2005. View at Publisher · View at Google Scholar
  20. S. C. Smith, “Design of an FPGA logic element for implementing asynchronous NULL convention logic circuits,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15, no. 6, pp. 672–683, 2007. View at Publisher · View at Google Scholar
  21. D. Sokolov and A. Yakovlev, “Clockless circuits and system synthesis,” IEE Proceedings: Computers and Digital Techniques, vol. 152, no. 3, pp. 298–316, 2005. View at Publisher · View at Google Scholar
  22. H. Jacobson, Asynchronous circuit design: a case study of a framework called ACK, M.S. thesis, Luleå University of Technology, Luleå, Sweden, 1996.
  23. S. M. Nowick, “Automatic synthesis of burst-mode asynchronous controllers,” Tech. Rep. CSL-TR-95-686, Stanford University, Stanford, Calif, USA, 1995. View at Google Scholar
  24. S. M. Nowick and D. L. Dill, “Exact two-level minimization of hazard-free logic with multiple-input changes,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 14, no. 8, pp. 986–997, 1995. View at Publisher · View at Google Scholar
  25. P. Siegel, G. De Micheli, and D. Dill, “Automatic technology mapping for generalized fundamental-mode asynchronous designs,” in Proceedings of the 30th ACM/IEEE Design Automation Conference (DAC '93), pp. 61–67, Dallas, Tex, USA, June 1993.
  26. B. Lin and S. Devadas, “Synthesis of hazard-free multilevel logic under multiple-input changes from binary decision diagrams,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 14, no. 8, pp. 974–985, 1995. View at Publisher · View at Google Scholar
  27. K. Y. Yun and D. L. Dill, “Automatic synthesis of extended burst-mode circuits. I. (Specification and hazard-free implementations),” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 18, no. 2, pp. 101–117, 1999. View at Publisher · View at Google Scholar
  28. R. M. Fuhrer, S. M. Nowick, M. Theobald, N. K. Jha, and L. A. Plana, “Minimalist: an environment for the synthesis and verification of burst-mode asynchronous machines,” in Proceedings of the International Workshop on Logic Synthesis (IWLS '98), Lake Tahoe, Calif, USA, June 1998.
  29. H. M. Jacobson and C. J. Myers, “Efficient algorithms for exact two-level hazard-free logic minimization,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 21, no. 11, pp. 1269–1283, 2002. View at Publisher · View at Google Scholar
  30. S. H. Unger, “Hazards and delays in asynchronous sequential switching circuits,” IRE Transactions on Circuit Theory, vol. 6, no. 1, pp. 12–25, 1959. View at Google Scholar
  31. Altera Corporation, http://www.altera.com/.