Table of Contents Author Guidelines Submit a Manuscript
International Journal of Reconfigurable Computing
Volume 2012, Article ID 148190, 16 pages
http://dx.doi.org/10.1155/2012/148190
Research Article

An FPGA-Based Omnidirectional Vision Sensor for Motion Detection on Mobile Robots

1Faculty of Technology, University of Brasilia, 70910-900 Brasilia, DF, Brazil
2Faculty of Gama, University of Brasilia, 72405-610 Brasilia, DF, Brazil

Received 20 February 2012; Accepted 4 April 2012

Academic Editor: Alisson Brito

Copyright © 2012 Jones Y. Mori et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Siegwart and I. Nourbakhsh, Introduction to Autonomous Mobile Robots, MIT Press, Cambridge, Mass, USA, 2004.
  2. L. Spacek and C. Burbridge, “Instantaneous robot self-localization and motion estimation with omnidirectional vision,” Robotics and Autonomous Systems, vol. 55, no. 9, pp. 667–674, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Yudi Mori, D. Mũoz Arboleda, J. N. Arias Garcia, C. Llanos Quintero, and J. Motta, “FPGA-based image processing for omnidirectional vision on mobile robots,” in Proceedings of the 24th Symposium on Integrated Circuits and Systems Design, pp. 113–118, João Pessoa, Brazil, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Trucco and A. Verri, Introductory Techniques for 3-D Computer Vision, Prentice Hall, 1998.
  5. K. Daniilidis and C. Geyer, “Omnidirectional vision: theory and algorithms,” in Proceedings of the 15th International Conference on Pattern Recognition, vol. 1, pp. 89–96, 2000.
  6. C. Geyer and K. Daniilidis, “Catadioptric camera calibration,” in Proceedings of the 17th IEEE International Conference on Computer Vision (ICCV '99), vol. 1, pp. 398–404, September 1999. View at Scopus
  7. G. Botella, M. Rodriguez, A. Garca, and E. Ros, “Neuromorphic configurable architecture for robust motion estimation,” International Journal of Reconfigurable Computing, vol. 2008, Article ID 428265, 9 pages, 2008. View at Publisher · View at Google Scholar
  8. Z. Wei, D. Lee, N. Brent, J. Archibald, and B. Edwards, “FPGA-based embedded motion estimation sensor,” International Journal of Reconfigurable Computing, vol. 2008, Article ID 636145, 9 pages, 2008. View at Publisher · View at Google Scholar
  9. K. Shimizu and S. Hirai, “CMOS+FPGA vision system for visual feedback of mechanical systems,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '06), pp. 2060–2065, May 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Saldaña-González and M. Arias-Estrada, “FPGA based acceleration for image processing applications,” in Image Processing, 2009. View at Google Scholar
  11. Y. Tu and M. Ho, “Design and implementation of robust visual servoing control of an inverted pendulum with an FPGAbased image co-processor,” Mechatronics, vol. 21, no. 7, pp. 1170–1182, 2011. View at Google Scholar
  12. T. Kryjak and M. Gorgoń, “Real-time implementation of moving object detection in video surveillance systems using FPGA,” Computer Science, vol. 12, pp. 149–162, 2011. View at Google Scholar
  13. R. Rodriguez-Gomez, E. Fernandez-Sanchez, J. Diaz, and E. Ros, “FPGA implementation for real-time background subtraction based on horprasert model,” Sensors, vol. 12, pp. 585–611, 2012. View at Google Scholar
  14. R. Chojecki and B. Siemiatkowska, “Mobile robot navigation based on omnidirectional sensor,” in Proceedings of the European Conference on Mobile Robots (ECMR '03), pp. 101–106, Radziejowice, Poland, September 2003.
  15. M. A. Vega-Rodríguez, A. Gómez-Iglesias, J. A. Gómez-Pulido, and J. M. Sánchez-Pérez, “Reconfigurable computing system for image processing via the internet,” Microprocessors and Microsystems, vol. 31, pp. 498–515, 2007. View at Publisher · View at Google Scholar
  16. F. Nava, D. Sciuto, M. D. Santambrogio et al., “Applying dynamic reconfiguration in the mobile robotics domain: a case study on computer vision algorithms,” ACM Transactions on Reconfigurable Technology and Systems, vol. 4, no. 3, 2011. View at Publisher · View at Google Scholar
  17. L. Chen, M. Zhang, B. Wang, Z. Xiong, and G. Cheng, “Real-time FPGA-based panoramic unrolling of high-resolution catadioptric omnidirectional images,” in Proceedings of the International Conference on Measuring Technology and Mechatronics Automation (ICMTMA '09), pp. 502–505, Hunan, China, April 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Gardel, A. Hernández, R. Miota, I. Bravo, and R. Mateos, “Correction of omnidirectional camera images using reconfigurable hardware,” in Proceedings of the 32nd Annual Conference on IEEE Industrial Electronics, pp. 3403–3407, Paris, France, November 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Zhang, Z. Qi, J. Zhu, and Z. Cao, “Omnidirection image restoration based on spherical perspective projection,” in Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems, pp. 922–925, Macao, China, December 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Shu-ren, Z. Mao-jun, X. Zhi-hui, L. Le, and C. L. Dong, “Design and implementation of high-resolution omnidirectional vision system,” Chinese Journal of Video Engineering, vol. 10, no. 1, pp. 1–6, 2008. View at Google Scholar
  21. A. Maeder, H. Bistry, and J. Zhang, “Towards intelligent autonomous vision systems—smart image processing for robotic applications,” in Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO '07), pp. 1081–1086, Sanya, China, December 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Benosman, E. Deforas, and J. Devars, “A new catadioptric sensor for the panoramic vision of mobile robots,” in Proceedings of the IEEE Workshop on Omnidirectional Vision, pp. 112–116, 2000.
  23. J. Fabrizio, J.-P. Tarel, and R. Benosman, “Calibration of panoramic catadioptric sensors made easier,” in Proceedings of the 3rd Workshop on Omnidirectional Vision, pp. 45–52, 2002.
  24. S. Ramalingam, P. Sturm, and S. K. Lodha, “Towards complete generic camera calibration,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), vol. 1, pp. 1093–1098, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Y. Mori, C. Sánchez-Ferreira, D. M. Munoz, C. H. Llanos, and P. Berger, “An unified approach for convolution-based image filtering on reconfigurable systems,” in Proceedings of the 7th Southern Conference on Programmable Logic (SPL '11), pp. 63–68, Crdoba, Argentina, April 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Mori, Implementação de técnicas de processamento de imagens no domínio espacial em sistemas reconfiguráveis, M.S. thesis, Universidade de Brasília, Brasília, Brazil, 2010.
  27. D. M. Muñoz, D. F. Sanchez, C. H. Llanos, and M. Ayala-Rincón, “Tradeoff of FPGA design of a floating-point library for arithmetic operators,” Journal of Integrated Circuits and Systems, vol. 5, no. 1, pp. 42–52, 2010. View at Google Scholar · View at Scopus