Table of Contents Author Guidelines Submit a Manuscript
International Journal of Reconfigurable Computing
Volume 2012, Article ID 186057, 12 pages
http://dx.doi.org/10.1155/2012/186057
Research Article

DMPDS: A Fast Motion Estimation Algorithm Targeting High Resolution Videos and Its FPGA Implementation

1Group of Architectures and Integrated Circuits (GACI), Federal University of Pelotas (UFPEL), 96010-610 Pelotas, RS, Brazil
2Microelectronics Group (GME), Federal University of Rio Grande do Sul (UFRGS), 90040-060 Porto Alegre, RS, Brazil

Received 2 May 2012; Accepted 9 October 2012

Academic Editor: Michael Hübner

Copyright © 2012 Gustavo Sanchez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. S. Cheng, Z. Y. Chen, and P. C. Chang, “An H.264 spatio-temporal hierarchical fast motion estimation algorithm for high-definition video,” in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS '09), pp. 880–883, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Richardson, Video Codec Design: Developing Image and Video Compression Systems, Wiley, 2002.
  3. ITU-T e ISO/IEC JTC1, “Generic coding of moving pictures and associated audio information—Part 2: Video,” ITU-T Rec. H.262 and ISO/IEC, 13818-2 (MPEG-2), 1994.
  4. T. Wiegand, G. Sullivan, and A. Luthra, Eds., Draft ITU-T Recommendation and final draft international standard of joint video specification (ITU-T Rec.H.264|ISO/IEC, 14496-10 AVC), 2003.
  5. JCT, Working Draft 3 of High-Efficiency Video Coding, JCTVC-E603, 2011.
  6. M. Porto, G. Sanchez, D. Noble, S. Bampi, and L. Agostini, “An efficient ME architecture for high definition videos using the new MPDS algorithm,” in Proceedings of the 24th symposium on Integrated circuits and systems design (ACM SBCCI '11), pp. 119–124, 2011.
  7. G. Sanchez, M. Porto, S. Bampi, and Agostini, “Real time QFHD motion estimation architecture for DMPDS algorithm,” in IEEE Southern Programmable Logic Conference, 2012.
  8. S. Zhu and K. K. Ma, “A new diamond search algorithm for fast block-matching motion estimation,” IEEE Transactions on Image Processing, vol. 9, no. 2, pp. 287–290, 2000. View at Google Scholar · View at Scopus
  9. Altera Corporation, “Altera: The Programmable Solutions Company,” http://www.altera.com/.
  10. Xilinx, http://www.xilinx.com/.
  11. Xiph.org: Test media, 2011, http://media.xiph.org/video/derf/.
  12. M. M. Corrêa, M. T. Schoenknecht, R. S. Dornelles, and L. V. Agostini, “A high-throughput hardware architecture for the H.264/AVC half-pixel motion estimation targeting high-definition videos,” International Journal of Reconfigurable Computing, vol. 2011, Article ID 254730, 9 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Sanchez, D. Noble, M. Porto, and L. Agostini, “High efficient motion estimation architecture with integrated motion compensation and FME support,” in Proceedings of the IEEE 2nd Latin American Symposium on Circuits and Systems (LASCAS '11), pp. 1–4, February 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Y. Kao, C. L. Wu, and Y. L. Lin, “A high-performance three-engine architecture for H.264/AVC fractional motion estimation,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 4, pp. 662–666, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. O. Tasdizen, A. Akin, H. Kukner, and I. Hamzaoglu, “Dynamically variable step search motion estimation algorithm and a dynamically reconfigurable hardware for its implementation,” IEEE Transactions on Consumer Electronics, vol. 55, no. 3, pp. 1645–1653, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Vanne, E. Aho, K. Kuusilinna, and T. D. Hämäläinen, “A configurable motion estimation architecture for block-matching algorithms,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 4, pp. 466–476, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. K. Lai, L. F. Chen, and S. Y. Huang, “Hybrid parallel motion estimation architecture based on fast top-winners search algorithm,” IEEE Transactions on Consumer Electronics, vol. 56, no. 3, pp. 1837–1842, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Yin, H. Jia, H. Qi, X. Ji, X. Xie, and W. Gao, “A hardware-efficient multi-resolution block matching algorithm and its VLSI architecture for high definition MPEG-like video encoders,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 9, pp. 1242–1254, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Cetin and I. Hamzaoglu, “An adaptive true motion estimation algorithm for frame rate conversion of high definition video and its hardware implementations,” IEEE Transactions on Consumer Electronics, vol. 57, no. 2, pp. 923–931, 2011. View at Publisher · View at Google Scholar · View at Scopus