Table of Contents Author Guidelines Submit a Manuscript
International Journal of Reconfigurable Computing
Volume 2012, Article ID 219028, 13 pages
http://dx.doi.org/10.1155/2012/219028
Research Article

Cellular Automata-Based Parallel Random Number Generators Using FPGAs

Department of Electrical Engineering, The University of Texas at Tyler, TX 75799, USA

Received 13 February 2012; Revised 4 June 2012; Accepted 20 June 2012

Academic Editor: Dionisis Pnevmatikatos

Copyright © 2012 David H. K. Hoe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Sipper, “Emergence of cellular computing,” Computer, vol. 32, no. 7, pp. 18–26, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Zhang, Y. Wang, S. Yang, R. Yao, and J. Cui, “The research of self-repairing digital circuit based on embryonic cellular array,” Neural Computing and Applications, vol. 17, no. 2, pp. 145–151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. L. O. Chua and L. Yang, “Cellular neural networks: theory,” IEEE Transactions on Circuits and Systems, vol. 35, no. 10, pp. 1257–1272, 1988. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Schwarzlmüeller and K. Kyamakya, “Implementing a CNN Universal Machine on FPGA: state-of-the-art and key challenges,” in Proceedings of the International Symposium on Theoretical Engineering (ISTET '09), pp. 1–5, June 2009.
  5. S. Wolfram, “Random sequence generation by cellular automata,” Advances in Applied Mathematics, vol. 7, no. 2, pp. 123–169, 1986. View at Google Scholar · View at Scopus
  6. S. Wolfram, A New Kind of Science, Wolfram Media, 2002.
  7. B. Chopard and M. Droz, Cellular Automata Modeling of Physical Systems, Cambridge University Press, 1998.
  8. J. Mata and M. Cohn, “Cellular automata-based modeling program: synthetic immune system,” Immunological Reviews, vol. 216, no. 1, pp. 198–212, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Schramm, Y. Jin, and B. Sendhoff, “Redundancy creates opportunity in developmental representations,” in Proceedings of the IEEE Symposium on Artificial Life (ALIFE '11), pp. 203–210, April 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. O. K. Tonguz, W. Viriyasitavat, and F. Bai, “Modeling urban traffic: a cellular automata approach,” IEEE Communications Magazine, vol. 47, no. 5, pp. 142–150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. L. R. Hook IV and S. C. Lee, “Design and simulation of 2-D 2-dot quantum-dot cellular automata logic,” IEEE Transactions on Nanotechnology, vol. 10, no. 5, pp. 996–1003, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Cho and E. E. Swartzlander, “Adder designs and analyses for quantum-dot cellular automata,” IEEE Transactions on Nanotechnology, vol. 6, no. 3, pp. 374–383, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Mamei, A. Roli, and F. Zambonelli, “Emergence and control of macro-spatial structures in perturbed cellular automata, and implications for pervasive computing systems,” IEEE Transactions on Systems, Man, and Cybernetics Part A, vol. 35, no. 3, pp. 337–348, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Nichele and G. Tufte, “Trajectories and attractors as specification for the evolution of behaviour in cellular automata,” in Proceedings of the 6th IEEE World Congress on Computational Intelligence (WCCI '10), pp. 1–8, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Kanoh and S. Sato, “Improved evolutionary design for rule-changing cellular automata based on the difficulty of problems,” in Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC '07), pp. 1243–1248, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Fortuna, M. Frasca, A. S. Fiore, and L. O. Chua, “The wolfram machine,” International Journal of Bifurcation and Chaos, vol. 20, no. 12, pp. 3863–3917, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Srinivasan, S. Mathew, R. Ramanarayanan et al., “2.4GHz 7mW all-digital PVT-variation tolerant True Random Number Generator in 45nm CMOS,” in Proceedings of the 24th Symposium on VLSI Circuits (VLSIC '10), pp. 203–204, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Kobori, T. Maruyama, and T. Hoshino, “A cellular automata system with FPGA,” in Proceedings of the 9th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, pp. 120–129, 2001.
  19. P. A. Mudry, F. Vannel, G. Tempesti, and D. Mange, “CONFETTI: a reconfigurable hardware platform for prototyping cellular architectures,” in Proceedings of the 21st International Parallel and Distributed Processing Symposium (IPDPS '07), pp. 1–8, March 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Murtaza, A. G. Hoekstra, and P. M. A. Shot, “Performance modeling of 2D cellular automata on FPGA,” in Proceedings of the International Conference on Field Programmable Logic and Applications (FPL '07), pp. 74–78, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Furuya and E. J. McCluskey, “Two-pattern test capabilities of autonomous TPG circuits,” in Proceedings of the International Test Conference, pp. 704–711, October 1991. View at Scopus
  22. P. D. Hortensius, R. D. McLeod, W. Pries, D. M. Miller, and H. C. Card, “Cellular automata-based pseudorandom number generators for built-in self-test,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 8, no. 8, pp. 842–859, 1989. View at Publisher · View at Google Scholar · View at Scopus
  23. P. H. W. Leong, “Recent trends in FPGA architectures and applications,” in Proceedings of the 4th IEEE International Symposium on Electronic Design, Test and Applications (DELTA '08), pp. 137–141, January 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. DeHon, “Density advantage of configurable computing,” Computer, vol. 33, no. 4, pp. 41–49, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Sun, G. Peterson, and O. Storaasli, “Sparse matrix-vector multiplication design on FPGAs,” in Proceedings of the 15th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM '07), pp. 349–351, April 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. George and P. Alfke, “Linear Feedback Shift Registers in Virtex Devices,” Xilinx Application Note XAPP210 (v1.3), 2007.
  27. S. U. Guan and S. K. Tan, “Pseudorandom number generation with self-programmable cellular automata,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 7, pp. 1095–1101, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Marsaglia, Diehard, 1996, http://stat.fsu.edu/~geo/diehard.html.
  29. S. Nandi, B. Vamsi, S. Chakraborty, and P. P. Chaudhuri, “Cellular automata as a BIST structure for testing CMOS circuits,” IEE Proceedings, vol. 141, no. 1, pp. 41–47, 1994. View at Publisher · View at Google Scholar · View at Scopus
  30. T. E. Tkacik, “A hardware random number generator,” in Proceedings of the Cryptographic Hardware and Embedded Systems (CHES '02), vol. 2523 of Lecture Notes in Computer Science, pp. 450–453, 2003. View at Publisher · View at Google Scholar
  31. I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 2, pp. 203–215, 2007. View at Publisher · View at Google Scholar · View at Scopus