Table of Contents Author Guidelines Submit a Manuscript
International Journal of Reconfigurable Computing
Volume 2012, Article ID 786205, 17 pages
Research Article

An Optimization-Based Reconfigurable Design for a 6-Bit 11-MHz Parallel Pipeline ADC with Double-Sampling S&H

Laboratory of Integrable Systems (LSI), Polytechnic School, University of São Paulo, 05403-900 São Paulo, SP, Brazil

Received 17 February 2012; Accepted 22 May 2012

Academic Editor: Alisson Brito

Copyright © 2012 Wilmar Carvajal and Wilhelmus Van Noije. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper presents a 6 bit, 11 MS/s time-interleaved pipeline A/D converter design. The specification process, from block level to elementary circuits, is gradually covered to draw a design methodology. Both power consumption and mismatch between the parallel chain elements are intended to be reduced by using some techniques such as double and bottom-plate sampling, fully differential circuits, RSD digital correction, and geometric programming (GP) optimization of the elementary analog circuits (OTAs and comparators) design. Prelayout simulations of the complete ADC are presented to characterize the designed converter, which consumes 12 mW while sampling a 500 kHz input signal. Moreover, the block inside the ADC with the most stringent requirements in power, speed, and precision was sent to fabrication in a CMOS 0.35 μm AMS technology, and some postlayout results are shown.