International Journal of Rotating Machinery
 Journal metrics
Acceptance rate27%
Submission to final decision75 days
Acceptance to publication42 days
CiteScore2.700
Journal Citation Indicator0.290
Impact Factor-

Structures Dynamic Property Analysis of Elastic Composite Cylindrical Rolling Element

Read the full article

 Journal profile

International Journal of Rotating Machinery publishes original research articles as well as review articles on all types of rotating machinery employing gas, vapor, particle, liquid, and their mixtures (including slurry) as the working substances.

 Editor spotlight

Chief Editor, Professor Amano, is based at the University of Wisconsin–Milwaukee and his research concentrates on the enhancement of energy production using wind, biomass, alternate fuels, and fossil energy sources.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Experimental Film Cooling Effectiveness of Three-Hole-Branch Circular Holes

A three-hole-branch geometry for film cooling is proposed. Each branch is made up of a streamwise 30°-angled circular hole with a circular hole of the same diameter on each side of it. These three holes share the same inlet area on the coolant supply side. Three side hole inclination angles of 30°, 37.5°, and 45° and three branch angles (the angle between the main and side holes) generated nine configurations that were tested for four blowing ratios of 0.5, 1, 1.5, and 2. To their benefits, these straight-through circular holes could easily be laser drilled on the airfoils or other gas turbine hot section surfaces. For comparative evaluation of these film hole geometries, the commonly used 7°-7°-7° diffusion hole geometry with the same inlet hole diameter was tested as a baseline under otherwise identical conditions. The pressure-sensitive paint (PSP) technique was utilized to test these geometries for their film cooling effectiveness. Depending on the branch geometry, for the same amount of coolant, some configurations were found to be superior to the baseline case for stream- or spanwise film cooling distributions while for the steeper side hole angles, these branched holes did not perform as well as the baseline case. The main conclusion is that the three holes with the same inclination angle of 30° exhibited the best film cooling effectiveness performance including the baseline geometry.

Research Article

Tailored Centrifugal Turbomachinery for Electric Fuel Cell Turbocharger

Hydrogen fuel cell technology is identified as one option for allowing efficient vehicular propulsion with the least environmental impact on the path to a carbon-free society. Since more than 20 years, IHI is providing charging systems for stationary fuel cell applications and since 2004 for mobile fuel cell applications. The power density of fuel cells substantially increases if the system is pressurized. However, contaminants from fuel cell system components like structural materials, lubricants, adhesives, sealants, and hoses have been shown to affect the performance and durability of fuel cells. Therefore, the charging system that increases the pressure and the power density of the stacks inevitably needs to be oil-free. For this reason, gas bearings are applied to support the rotor of a fuel cell turbocharger. It furthermore comprises a turbine, a compressor, and, on the same shaft, an electric motor. The turbine utilizes the exhaust energy of the stack to support the compressor and hence lower the required electric power of the air supply system. The presented paper provides an overview of the fuel cell turbocharger technology. Detailed performance investigations show that a single-stage compressor with turbine is more efficient compared to a two-stage compressor system with intercooler. The turbine can provide more than 30% of the required compressor power. Hence, it substantially increases the system efficiency. It is also shown that a fixed geometry turbine design is appropriate for most applications. The compressor is of a low specific speed type with a vaneless diffuser. It is optimized for operating conditions of fuel cell systems, which typically require pressure ratios in the range of 3.0.

Research Article

Experimental Investigations on Leakages in Positive Displacement Machines

The clearance gaps in positive displacement machines such as compressors, pumps, expanders, and turbines are critical for their performance and reliability. The leakage flow through these clearances influences the volumetric and adiabatic efficiencies of the machines. The extent of the leakage flow depends on the size and shape of clearance paths and pressure differences across these paths. Usually, the mass flow through the gaps is estimated using the isentropic nozzle equation with the flow coefficients applied to correct for the real flow conditions. However, the flow coefficients applied generally do not take into account the shape and size of these leakage paths. For that reason, a proper understanding of the relationship between flow coefficients and shape parameters is crucial for an accurate prediction of leakage flows. The present study investigates the influence of the various dimensionless parameters such as Reynolds number, Mach number, and pressure ratio on the flow coefficients for circular and rectangular clearance shapes. The flow coefficients are determined by comparing the experimental values obtained in an experimental test rig and the flow rates obtained from the isentropic nozzle equation. It is observed that in the case of circular clearances, the mean deviation of the experimental leakage results (in comparison to the analytical results using isotropic nozzle equations) is +9.1%, which is significantly lower than the mean deviation (+20.5%) in the case of rectangular clearance leakages. The study indicates that the isentropic nozzle equation method is more suitable for predicting the leakages through the circular clearances and needs modifications for consideration of the rectangular clearances. Using regression analysis, empirical correlations are developed to predict the flow coefficient in terms of Reynolds number, Mach number, pressure ratio, aspect ratio, and β ratio, which are found to match within ±6.4 percent of the numerical results for the rectangular clearance and within the range of -3.6 percent to +5.1 percent of the numerical result for the circular clearance. The empirical relationships presented in this study can be extended to evaluate the flow coefficients in a positive displacement machine.

Research Article

Critical Hydraulic Eccentricity Estimation in Vertical Turbine Pump Impeller to Control Vibration

In many applications, pumps are tested against standard specifications to define the maximum allowable vibration amplitude limits of a pump. It is essential to identify the causes of vibration and methods to attenuate the same to ensure the safe and satisfactory operation of a pump. Causes of vibration can be classified mainly into mechanical and hydraulic nature. Respective unbalance masses are the two major factors which cause dynamic effects and excitation forces leading to undesirable vibrations. In this paper, the procedure of vibration magnitude measurement of a vertical turbine pump at site and the process of dynamic balancing to measure mechanical unbalance of an impeller are explained. After that, the impact of hydraulic eccentricity on the vibration displacement of a vertical turbine pump has been explained using numerical simulation procedure based on “One-way Fluid Structure Interaction (FSI).” The experimental results from a pump at site are used to compare the numerical results. After the solver validation, the one-way FSI approach is used to find the critical hydraulic eccentricity magnitude of a vertical turbine pump impeller to limit the vibration magnitudes on motor component to less than 100 μm. From the numerical simulations, it is deduced that the critical hydraulic eccentricity should be limited to 400 μm in and direction. The process can be used as a guideline procedure for limiting the hydraulic unbalance in vertical turbine pumps by limiting the hydraulic eccentricity.

Research Article

Effects of Side Load Chains of a Combine Harvester on Unbalanced Dynamic Vibrations of Its Threshing Drum

In order to study the influence of the side drive on the balance state of the threshing drum, this paper used the side eccentric load chain drive as the power on the threshing drum dynamic balance test bench. By analyzing the influence of different radial phases, different axial distances, and spiral combinations of the threshing drum on the counterweight, this paper studies the law of the effect of side partial load chain drive on the dynamic balance of the threshing drum and finds that the side chain drive has obvious influence on the unbalance phase of the threshing drum and the change of the axial distance of unbalance has little effect on the equilibrium state of the threshing drum. And from this, a vibration balance method based on the equivalent unbalance of the chain drive is proposed, which can predict and calculate the unbalance of the threshing drum. The unbalance of the threshing drum predicted by this method is smaller than the actual measured unbalance. The maximum error is 32.64% and the minimum error is 4.6%. In the two tests, the predicted unbalance is 1.24 mm/s in amplitude and 270 degrees in phase and amplitude 1.4 mm/s and phase 120 degrees, respectively. The measured unbalance is amplitude 1.587 mm/s and phases 286 degrees. The error between prediction and actual measurement is less than 32.64%, and the unbalance amplitudes that can be reduced by one-time dynamic balance are 0.856 mm/s and 0.674 mm/s, respectively. The research results in this paper provide an effective method for the balance state of the multidrum side chain transmission.

Research Article

Multisource Fault Signal Separation of Rotating Machinery Based on Wavelet Packet and Fast Independent Component Analysis

The vibration signal of rotating machinery compound faults acquired in actual fields has the characteristics of complex noise sources, the strong background noise, and the nonlinearity, causing the traditional blind source separation algorithm not be suitable for the blind separation of rotating machinery coupling fault. According to these problems, an extraction method of multisource fault signals based on wavelet packet analysis (WPA) and fast independent component analysis (FastICA) was proposed. Firstly, according to the characteristic of the vibration signal of rotating machinery, an effective denoising method of wavelet packet based on average threshold is presented and described to reduce the vibration signal noise. In the method, the thresholds of every node of the best wavelet packet basis are acquired and averaged, and then the average value is used as a global threshold to quantize the decomposition coefficient of every node. Secondly, the mixed signals were separated by using the improved FastICA algorithm. Finally, the results of simulations and real rotating machinery vibration signals analysis show that the method can extract the rotating machinery fault characteristics, verifying the effectiveness of the proposed algorithm.

International Journal of Rotating Machinery
 Journal metrics
Acceptance rate27%
Submission to final decision75 days
Acceptance to publication42 days
CiteScore2.700
Journal Citation Indicator0.290
Impact Factor-
 Submit

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.