Table of Contents Author Guidelines Submit a Manuscript
International Journal of Rotating Machinery
Volume 9 (2003), Issue 1, Pages 49-61
http://dx.doi.org/10.1155/S1023621X0300006X

Investigation of Flow Through Centrifugal Pump Impellers Using Computational Fluid Dynamics

1Fluid Mechanics Laboratory, Mechanical Engineering Department, National University of Singapore, Singapore
2Fluid Mechanics Laboratory, Mechanical Engineering Department, National University of Singapore, Singapore 119260, Singapore

Copyright © 2003 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

With the aid of computational fluid dynamics, the complex internal flows in water pump impellers can be well predicted, thus facilitating the design of pumps. This article describes the three-dimensional simulation of internal flow in three different types of centrifugal pumps (one pump has four straight blades and the other two have six twisted blades). A commercial three-dimensional Navier-Stokes code called CFX, with a standard kε two-equation turbulence model was used to simulate the problem under examination. In the calculation, the finite-volume method and an unstructured grid system were used for the solution procedure of the discretized governing equations for this problem.

Comparison of computational results for various types of pumps showed good agreement for the twisted-blade pumps. However, for the straight-blade pump, the computational results were somewhat different from widely published experimental results. It was found that the predicted results relating to twisted-blade pumps were better than those relating to the straight-blade pump, which suggests that the efficiency of a twisted-blade pump will be greater than that of a straight-blade pump. The calculation also predicts reasonable results in both the flow pattern and the pressure distribution.