International Journal of Rotating Machinery

International Journal of Rotating Machinery / 2003 / Article

Open Access

Volume 9 |Article ID 840751 | https://doi.org/10.1155/S1023621X03000356

J. Blair Perot, Sasanka Are, Xing Zhang, "Application of the Turbulent Potential Model to Unsteady Flows and Three-Dimensional Boundary Layers", International Journal of Rotating Machinery, vol. 9, Article ID 840751, 10 pages, 2003. https://doi.org/10.1155/S1023621X03000356

Application of the Turbulent Potential Model to Unsteady Flows and Three-Dimensional Boundary Layers

Abstract

The turbulent potential model is a Reynolds-averaged (RANS) turbulence model that is theoretically capable of capturing nonequilibrium turbulent flows at a computational cost and complexity comparable to two-equation models. The ability of the turbulent potential model to predict nonequilibrium turbulent flows accurately is evaluated in this work. The flow in a spanwise-driven channel flow and over a swept bump are used to evaluate the turbulent potential model's ability to predict complex three-dimensional boundary layers. Results of turbulent vortex shedding behind a triangular and a square cylinder are also presented in order to evaluate the model's ability to predict unsteady flows. Early indications suggest that models of this type may be capable of significantly enhancing current numerical predictions of turbomachinery components at little extra computational cost or additional code complexity.

Copyright © 2003 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views131
Downloads480
Citations

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.