Table of Contents Author Guidelines Submit a Manuscript
International Journal of Rotating Machinery
Volume 2013, Article ID 473512, 19 pages
Research Article

A One-Dimensional Flow Analysis for the Prediction of Centrifugal Pump Performance Characteristics

Department of Mechanical Power Engineering, Mansoura University, Mansoura 35516, Egypt

Received 25 June 2013; Accepted 29 August 2013

Academic Editor: Shigenao Maruyama

Copyright © 2013 Mohammed Ahmed El-Naggar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A one-dimensional flow procedure for analytical study of centrifugal pump performance is done applying the principle theories of turbomachines. Euler equation and energy equation are manipulated to find pump performance parameters at different discharge coefficients. Fluid slippage loss at impeller exit and volute loss are estimated. The fluid slippage is modeled by the slip factor approach using Wiesner empirical expression. The volute loss model counts friction loss associated with the volute throw flow velocity, diffusion friction loss due to circulation associated with volute flow, loss due to vanishing of radial flow at volute outlet, and loss inside pump volute throat. Models for impeller hydraulic friction power loss, disk friction power loss, internal flow leakage power loss, and inlet shock circulation power loss are considered by suitable models. Pump internal volumetric flow leakage and volumetric efficiency are related to pump geometry and flow properties. The procedure adopted in this paper is capable of obtaining performance characteristic curves of centrifugal pump in a dimensionless form. Pump head coefficient, manometric efficiency, power coefficient, and required NPSH are characterized. The predicted coefficients and obtained performance curves are consistent with experimental characteristics of centrifugal pump.