Table of Contents Author Guidelines Submit a Manuscript
International Journal of Rotating Machinery
Volume 2013, Article ID 638193, 10 pages
Research Article

Design and Parameter Study of a Self-Compensating Hydrostatic Rotary Bearing

College of Mechatronics Engineering & Automation, National University of Defense Technology, Changsha 410073, China

Received 7 April 2013; Accepted 20 September 2013

Academic Editor: Shigenao Maruyama

Copyright © 2013 Xiaobo Zuo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The influence of design parameters on the static performance of a newly designed self-compensating hydrostatic rotary bearing was investigated. The bearing was designed by incorporating the main attributes of angled-surface self-compensating bearing and opposed-pad self-compensating bearing. A governing model based on flow conservation was built to theoretically study the static performance, and the methodology was validated by experiments. It is pointed out that the influence factors on the bearing static performance are the designed resistance ratio of the restricting land to the bearing land, the inner resistance ratio of the land between pockets to that between the pocket and the drain groove, the initial clearance ratio of the restricting gap to the bearing gap, and the semiconical angle. Their effects on the load carrying capacity and stiffness were investigated by simulation. Results show that the optimum designed resistance ratio is 1; the initial clearance ratio should be small, and the inner resistance ratio should be large.