Table of Contents Author Guidelines Submit a Manuscript
International Journal of Rotating Machinery
Volume 2013, Article ID 896148, 11 pages
http://dx.doi.org/10.1155/2013/896148
Research Article

Optimum Design of Oil Lubricated Thrust Bearing for Hard Disk Drive with High Speed Spindle Motor

1Department of Mechanical Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa-ken 259-1292, Japan
2Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

Received 29 July 2013; Accepted 15 October 2013

Academic Editor: Masaru Ishizuka

Copyright © 2013 Yuta Sunami et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. H. Jang, S. H. Lee, and H. W. Kim, “Finite element analysis of the coupled journal and thrust bearing in a computer hard disk drive,” Journal of Tribology, vol. 128, no. 2, pp. 335–340, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Y. Park and G. H. Jang, “Dynamics of a hard disk drive spindle system due to its structural design variables and the design variables of fluid dynamic bearings,” IEEE Transactions on Magnetics, vol. 45, no. 11, pp. 5135–5140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Kobayashi and H. Yabe, “Numerical analysis of a coupled porous journal and thrust bearing system,” Journal of Tribology, vol. 127, no. 1, pp. 120–129, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Zhu and K. Ono, “A comparison study on the performance of four types of oil lubricated hydrodynamic thrust bearings for hard disk spindles,” Journal of Tribology, vol. 121, no. 1, pp. 114–120, 1999. View at Google Scholar · View at Scopus
  5. T. Asada, H. Saitou, and D. Itou, “Design of hydrodynamic bearing for miniature hard disk drives,” IEEE Transactions on Magnetics, vol. 43, no. 9, pp. 3721–3726, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. G. H. Jang and C. I. Lee, “Development of an HDD spindle motor with increased stiffness and damping coefficients by utilizing a stationary permanent magnet,” IEEE Transactions on Magnetics, vol. 43, no. 6, pp. 2570–2572, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. Q. Zhang, S. Chen, S. H. Winoto, and E.-H. Ong, “Design of high-speed magnetic fluid bearing spindle motor,” IEEE Transactions on Magnetics, vol. 37, no. 4, pp. 2647–2650, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Arakawa, S. Ikeda, T. Hirayama, T. Matsuoka, and N. Hishida, “Hydrodynamic bearing with non-uniform spiral grooves for high-speed HDD spindle,” in Proceedings of the IEEE 13th International Symposium on Consumer Electronics (ISCE '09), pp. 511–512, Kyoto, Japan, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Hashimoto and M. Ochiai, “Optimization of groove geometry for thrust air bearing to maximize bearing stiffness,” Journal of Tribology, vol. 130, no. 3, Article ID 031101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. D. Ibrahim, T. Namba, M. Ochiai, and H. Hashimoto, “Optimum design of thrust air bearing for hard disk drive spindle motor,” Journal of Advanced Mechanical Design, Systems and Manufacturing, vol. 4, no. 1, pp. 70–81, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Ochiai, Y. Sunami, and H. Hashimoto, “Experimental study on dynamic characteristics of fluid film bearing for HDD spindle motor,” in Proceedings of the 2nd International Conference on Design Engineering and Science, pp. 217–222, 2010.
  12. H. Hashimoto and M. Ochiai, “Theoretical analysis and optimum design of high speed gas film thrust bearings (static and dynamic characteristic analysis with experimental verifications),” Journal of Advanced Mechanical Design, Systems, and Manufacturing JSME, vol. 1, no. 1, pp. 102–112, 2007. View at Google Scholar
  13. N. Kawabata, “Study on generalization of calculations of lubricant flow using boundary fitted coordinate system (part 1, basic equations of DF method and case of incompressible fluids),” Transactions of the Japan Society of Mechanical Engineers C, vol. 53, no. 494, pp. 2155–2160, 1987. View at Google Scholar · View at Scopus