Table of Contents Author Guidelines Submit a Manuscript
International Journal of Rotating Machinery
Volume 2014, Article ID 316498, 10 pages
http://dx.doi.org/10.1155/2014/316498
Research Article

Preliminary Experimental Study on Pressure Loss Coefficients of Exhaust Manifold Junction

1Education Ministry Key Laboratory for Power Machinery and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
2Technology Center of the SAIC Motor, Shanghai 201800, China

Received 29 August 2013; Revised 6 January 2014; Accepted 24 January 2014; Published 13 March 2014

Academic Editor: Masaru Ishizuka

Copyright © 2014 Xiao-lu Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The flow characteristic of exhaust system has an important impact on inlet boundary of the turbine. In this paper, high speed flow in a diesel exhaust manifold junction was tested and simulated. The pressure loss coefficient of the junction flow was analyzed. The steady experimental results indicated that both of static pressure loss coefficients and first increased and then decreased with the increase of mass flow ratio of lateral branch and public manifold. The total pressure loss coefficient always increased with the increase of mass flow ratio of junctions 1 and 3. The total pressure loss coefficient first increased and then decreased with the increase of mass flow ratio of junctions 2 and 3. These pressure loss coefficients of the exhaust pipe junctions can be used in exhaust flow and turbine inlet boundary conditions analysis. In addition, simulating calculation was conducted to analyze the effect of branch angle on total pressure loss coefficient. According to the calculation results, total pressure loss coefficient was almost the same at low mass flow rate of branch manifold 1 but increased with lateral branch angle at high mass flow rate of branch manifold 1.