Table of Contents Author Guidelines Submit a Manuscript
International Journal of Rotating Machinery
Volume 2014, Article ID 603241, 11 pages
Research Article

A New Method for Field-Balancing of High-Speed Flexible Rotors without Trial Weights

1Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, KFUPM Box 1767, Dhahran 31261, Saudi Arabia
2Data & Consulting Services, Schlumberger, Dhahran Tech Valley, Dhahran 31261, Saudi Arabia
3Department of Mathematics, King Fahd University of Petroleum & Minerals, KFUPM Box 1767, Dhahran 31261, Saudi Arabia

Received 15 January 2014; Revised 20 April 2014; Accepted 21 May 2014; Published 15 June 2014

Academic Editor: Hyeong Joon Ahn

Copyright © 2014 Y. A. Khulief et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Flexible rotor balancing, in general, relies to a great extent on physical insight into the modal nature of the unbalance response. The objective of this investigation is to develop a hybrid experimental/analytical technique for balancing high-speed flexible rotors. The developed technique adopts an approach that combines the finite element modeling, experimental modal analysis, vibration measurements, and mathematical identification. The modal imbalances are identified and then transformed to the nodal space, in order to determine a set of physical balancing masses at some selected correction planes. The developed method does not rely on trial runs. In addition, the method does not require operating the supercritical rotor in a high-speed balancing facility, while accounting for the contribution of higher significant modes. The developed scheme is applied to a multidisk, multibearing, high-speed flexible rotor, where the interaction between the rotor-bending operating deflections and the forces resulting from the residual unbalance are appreciable. Some new benchmark solutions and observations are reported. The applicability, reliability, and challenges that may be encountered in field applications are addressed.